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Abstract

The Mixture of Experts (MoE) architecture is a cornerstone of modern state-of-the-art (SOTA)
large language models (LLMs). MoE models facilitate scalability by enabling sparse pa-
rameter activation. However, traditional MoE architecture uses homogeneous experts of
a uniform size, activating a fixed number of parameters irrespective of input complexity
and thus limiting computational efficiency. To overcome this limitation, we introduce Grove
MoE, a novel architecture incorporating experts of varying sizes, inspired by the heteroge-
neous big.LITTLE CPU architecture. This architecture features novel adjugate experts with a
dynamic activation mechanism, enabling model capacity expansion while maintaining man-
ageable computational overhead. Building on this architecture, we present GroveMoE-Base
and GroveMoE-Inst, 33B-parameter LLMs developed by applying an upcycling strategy to
the Qwen3-30B-A3B-Base model during mid-training and post-training. GroveMoE mod-
els dynamically activate 3.14–3.28B parameters based on token complexity and achieve
performance comparable to SOTA open-source models of similar or even larger size.
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Figure 1: Benchmark performance of GroveMoE-Inst‡ and its counterparts. Our GroveMoE-Inst achieves
performance comparable to open-source SOTA LLMs of similar or even larger scales.
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1 Introduction
Recent advancements in Large Language Models (LLMs) have spurred the adoption of the Mixture of Experts
(MoE) architecture (Jiang et al., 2024; Yang et al., 2025; Liu et al., 2024; Sun et al., 2024; Google DeepMind,
2025; Huo et al., 2025) considering its great model capacity. The MoE model operates by dynamically routing
input tokens to a relevant subset of multiple experts, enhancing computational efficiency and scalability.

However, a key limitation of conventional MoE models is their reliance on homogeneous experts, which
activates a fixed number of parameters irrespective of input token complexity. Given that token complexity
varies, computational resources should ideally be allocated dynamically with more resources for complex
tokens and fewer for simple ones (Huang et al., 2024). The current rigidity precludes such fine-grained
control over computation. Inspiration from the big.LITTLE CPU architecture (Greenhalgh, 2011), which uses
heterogeneous cores to manage computational load efficiently. Analogously, employing experts of varying
sizes within MoE models could enable dynamic resource allocation based on computational demand.

Drawing inspiration from the structure of trees, we introduce Grove MoE, a novel architecture that leverages
parallel adjugate experts to expand model capacity efficiently. Grove reflects our architectural design, where
experts are organized into disjoint groups. Similar to how branches share a common trunk within a tree
cluster, experts within a Grove group share a single adjugate expert. If multiple activated experts belong
to the same group, their shared adjugate expert is computed only once before being added to each expert’s
output. This mechanism enables a form of dynamic computation allocation, allowing Grove MoE to expand
model capacity with high computational efficiency. Crucially, the Grove MoE architecture is compatible with
existing routing mechanisms, eliminating the need for complex, manually designed routing strategies (Huang
et al., 2024; Wang et al., 2024b) to manage expert activation counts. Moreover, we apply a loss-free expert
loading balance strategy during mid-training (Liu et al., 2024; Su, 2025).

Furthermore, the upcycling strategy (Komatsuzaki et al., 2023; Nakamura et al., 2025) has been widely used for
upcycling dense models, which offer larger model capacity. Recent studies (Baykal et al., 2023; Wu et al., 2024;
Chen et al., 2025) have also shown that expanding model capabilities through parallel computation, especially
by reusing existing weights, is an effective strategy comparable to direct parameter scaling. Consequently,
we develop our GroveMoE architecture based on pre-trained MoE models through mid-training (Meta-AI,
2025; Yang et al., 2025) and post-training stages. We summarize our main contributions as follows:

• We introduce the Grove MoE architecture, which features a new mechanism of dynamic computation
allocation, allowing for parameter expansion while maintaining manageable computational costs.

• We develop GroveMoE-Base and GroveMoE-Inst, open-source models that dynamically activate 3.14-
3.28B parameters, upcycled based on Qwen3-30B-A3B-Base through mid-training and post-training.

• We conduct empirical evaluations showing that our GroveMoE models achieve performance compa-
rable to open-source SOTA LLMs of similar or even larger scales across various tasks.

2 Related Works
big.LITTLE Architecture. The big.LITTLE CPU architecture (Greenhalgh, 2011) offers a compelling model
for computational efficiency by integrating high-performance big cores and energy-efficient LITTLE cores
within a single processor, dynamically routing tasks to the appropriate core type. In contrast, traditional
MoE architectures (Yang et al., 2025; Liu et al., 2024) typically employ homogeneous experts of uniform size,
analogous to a processor with only one type of core, which leads to suboptimal efficiency. Drawing inspiration
from the big.LITTLE architecture, we propose an MoE architecture where experts vary in computational
capacity and the experts are dynamically activated. In this paper, we introduce the Grove MoE architecture,
which materializes this concept through novel adjugate experts and a dynamic activation mechanism.

MoE Architecture with Dynamic Activation. Prior research has explored dynamic activation of expert
counts in MoE models to mitigate the ineffectiveness of fixed top-k routing for modeling targets of different
complexity. Naive approaches (Jin et al., 2024; Zeng et al., 2024) indirectly vary the active expert count by
including blank or constant experts in the routing pool. DynMoE (Guo et al., 2024) enables a top-any gating
mechanism to choose any number of experts. ReMoE (Wang et al., 2024b) activates experts with positive
scores via the ReLU function. Both DynMoE and ReMoE face the challenge of needing explicit mechanisms
to manage the upper bound on the number of activated experts so as to avoid potential high computation

As the GroveMoE architecture is inspired by the big.LITTLE CPU design, the name Grove also honors Andy Grove, a
legendary figure in the semi-conductor industry.
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overhead. Moreover, their relatively complex routing strategies are incompatible with the well-established
top-k routing mechanisms, which brings potential issues in practice. In contrast, our GroveMoE layer
intrinsically achieves dynamic activation by assigning adjugate experts to separate groups. This approach
guarantees a controllable activation count and thus manageable computation overhead. It requires no
specialized router modifications, and the excellent compatibility makes it widely applicable.

Upcycling Strategy. The performance of LLMs is intrinsically related to the model capacity. Various upcycling
methods (Komatsuzaki et al., 2023; Nakamura et al., 2025) have been proposed to upcycle dense models,
leveraging knowledge from pre-training models. This paper develops GroveMoE-Base and GroveMoE-Inst
models by applying the upcycle strategy to the MoE model Qwen3-30B-A3B-Base (Yang et al., 2025).

3 Architecture
3.1 Traditional MoE Layer

An MoE layer comprises n experts {Ei}n
i=1 and a router R. Let x ∈ Rd represent the feature of an input token,

where d denotes the feature dimension. The routing scores are calculated as ρ = R(x) ∈ Rn and the output
of the i-th expert is ei = Ei(x) ∈ Rd. The final output of the MoE layer for each token is a weighted sum of
the outputs from a selected subset of experts:

y = ∑
i∈arg topk(ρ)

ρiei, (1)

where arg topk(·) selects the indices of the top k routing scores.

3.2 Grove MoE with Adjugate Experts
Expanding model capacity during mid-training is a promising strategy, as it preserves existing knowledge
while providing additional resources to acquire complex skills. However, under the upcycling strategy,
directly duplicating each expert’s parameters would disturb the original distribution of ρ. Specifically, when
experts are duplicated, k must be scaled proportionally by the same scale factor. However, k should be
controlled to avoid introducing significant activation parameters. Alternatively, extending the parameters of
each expert Ei maintains the original ρ distribution and offers a viable solution.

The AltUp architecture (Baykal et al., 2023) demonstrates that introducing parallel blocks can increase model
capacity without incurring substantial computational overhead. Moreover, scaling parallel computation
by reusing existing parameters has proven effective for enhancing model capability, with similar effects as
scaling parameters (Wu et al., 2024; Chen et al., 2025).

Inspiredly, we introduce Grove MoE, a novel architecture that leverages parallel adjugnate experts for efficient
model capacity expansion. In the Grove MoE layer, we divide n experts, {Ei}n

i=1, into g disjoint groups,
where g divides n, and each group contains n/g experts. The groups {Gj}

g
j=1 can be defined as follows:

Gj =

{
Ei |

⌊
i− 1
n/g

⌋
+ 1 = j

}
, for j = 1, 2, . . . , g, (2)

where ⌊·⌋ denotes the floor function. Motivated by big.LITTLE architecture (Greenhalgh, 2011), we introduce
an adjugate expert Aj for each group Gj. Notably, the capacity of the adjugate expert Aj can differ from that
of the expert Ei. The modified output ēi is then computed as:

ēi = Ei(x) + λAj(x), where j =
⌊

i− 1
n/g

⌋
+ 1. (3)

Here, λ is the scaling factor for the adjugate expert. The final output of the Grove MoE layer is:

y = ∑
i∈arg topk(ρ)

ρiēi = ∑
i∈arg topk(ρ)

ρi(Ei(x) + λAj(x)), where j =
⌊

i− 1
n/g

⌋
+ 1. (4)

The key advantage of the Grove MoE architecture is dynamic computation allocation. To illustrate, consider
experts Er and Es where

⌊
r−1
n/g

⌋
=

⌊
s−1
n/g

⌋
. According to Equation (4):

ρrēr + ρsēs = ρr(Er(x) + λAj(x)) + ρs(Es(x) + λAj(x))

= ρrEr(x) + ρsEs(x) + (ρr + ρs)λAj(x), where j =
⌊

r− 1
n/g

⌋
+ 1. (5)
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Figure 2: Comparison between the traditional MoE layer and our Grove MoE layer with dynamic computation
allocation. For clarity, we configure n/g = 2 and k = 4 for the Grove MoE layer.

For the adjugate expert Aj, the routing weight ρA = (ρr + ρs)λ should be restricted to be no more than
the weight of experts Er and Es, especially for the upcycling mid-training case. Generally, we restrict
λ ≤ 1.0/(n/g) = g/n. For instance, for a MoE model with n=128 experts and g=64 groups, we restrict
λ ≤ 0.5.

As shown in Figure 2, if multiple activated experts belong to the same group, their adjugate expert Aj is
computed only once before being added to each expert’s output, scaled by the sum of their routing weights.
According to Equation (5), the number of activated adjugate expert Aj ranges from

⌈
k

n/g

⌉
to k for each Grove

MoE layer, where ⌈·⌉ denotes the ceiling function. This mechanism enables a form of dynamic computation
allocation, allowing Grove MoE to expand model capacity with high computational efficiency, which aligns
with the design concept of the big.LITTLE architecture (Greenhalgh, 2011).

3.3 Experts Loading Balance
In MoE models, workload imbalance among experts can induce routing collapse and reduce computational
efficiency. To better balance load distribution while maintaining model performance, we employ an auxiliary-
loss-free load balancing strategy (Liu et al., 2024). Specifically, we introduce a dynamic expert-wise bias term
b to adjust routing scores ρ. The gating mechanism in Equation (4) is therefore modified as:

y = ∑
i∈arg topk(ρ+b)

ρiēi, (6)

where b is updated via sign gradient descent to minimize imbalance.

Formally, we define F = E(f ) as the current load distribution across experts under the bias b, where
f = [ f1, f2, · · · , fn] and fi denotes the assignment probability for each token:

fi =

{
1/k, i ∈ arg topk(ρ+ b),
0, otherwise.

(7)

The uniform load distribution is Q = [ 1
n , 1

n , · · · , 1
n ]. To optimize load balancing (Su, 2025), b is updated as:

b← b− α
F −Q√

1
n

n
∑

i=1
(Fi −Qi)2

. (8)

Specifically, Equation (8) uses RMSNorm to normalize the imbalance (F −Q) for better workload balance.
To address the sensitivity of the parameter α in Equation (8), resulting from its coupling with the Sigmoid
router (Liu et al., 2024; Su, 2025), we decouple the routing calculation. The final output y is computed as:

y = ∑
i∈arg topk(ρ(σ)+b)

ρ
(h)
i ei, (9)
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Table 1: Architecture exploration on different expert group settings. The highest and second-best scores are
shown in bold and underlined, respectively.

Expert Groups - - g = 64; h = 128 g = 32; h = 256 g = 16; h = 512

Architecture MoE MoE Grove MoE Grove MoE Grove MoE
# Total Params 30B 30B 33B 33B 33B
# Activated Params
# Avg. Activation

3B
3B

3B
3B

3.14B-3.28B
3.26B

3.14B-3.57B
3.51B

3.14B-4.11B
3.93B

# Training Tokens 0B 50B 50B 50B 50B

MMLU 81.58 82.56 82.57 82.12 80.23
CMMLU 80.63 86.54 86.47 85.54 85.57
SuperGPQA 36.10 35.93 36.22 36.09 36.12

GSM8K 89.39 89.54 90.07 90.83 90.67
MATH 59.75 65.90 66.52 66.60 66.64
GPQA-Diamond 39.39 38.38 41.41 39.39 44.95

HumanEval+ 83.54 83.54 85.37 84.75 84.15
MBPP+ 71.96 74.34 75.66 75.13 74.07

Average 67.79 69.59 70.54 70.06 70.30

Table 2: Architecture exploration on different scaling factors. The highest and second-best scores are shown
in bold and underlined, respectively.

Scaling Factor - - λ = 0.20 λ = 0.10 λ = 0.05

Architecture MoE MoE Grove MoE Grove MoE Grove MoE
# Total Params 30B 30B 33B 33B 33B
# Training Tokens 0B 50B 50B 50B 50B

MMLU 81.58 82.56 79.69 82.57 82.62
CMMLU 80.63 86.54 86.33 86.47 86.55
SuperGPQA 36.10 35.93 33.99 36.22 36.32

GSM8K 89.39 89.54 90.14 90.07 90.83
MATH 59.75 65.90 66.62 66.52 65.86
GPQA-Diamond 39.39 38.38 43.43 41.41 43.94

HumanEval+ 83.54 83.54 85.37 85.37 84.76
MBPP+ 71.96 74.34 75.93 75.66 75.13

Average 67.79 69.59 70.19 70.54 70.75

where ρ(h) is the output of a Softmax router and ρ(σ) is the output of a Sigmoid router:

ρ
(h)
i =

exi

∑n
j=1 exj

and ρ
(σ)
i =

1
1 + e−xi

. (10)

This decoupled approach enables us to use a constant value of α = 0.001, as used in Liu et al. (2024).

3.4 Reuse of Pre-Trained Weights
Building on the concept of upcycling strategy (Komatsuzaki et al., 2023), we leverage pre-trained weights
from MoE models. During initialization of our Grove MoE architecture, each expert Ei is derived from a
pre-trained MoE layer. To ensure structural coherence, other components, such as the normalization and
attention layers, are directly copied from the pre-trained transformer block. Additionally, the down-projection
blocks of newly inserted modules {Aj}

g
j=1 are zero-initialized. The remaining weights in {Aj}

g
j=1 follow a

normal distribution with a standard deviation of 0.006 (Liu et al., 2024).

4 Mid-Training
4.1 Mid-Training Data
The mid-training stage is designed to target specific proficiencies, such as reasoning and code generation.
The corpus utilized for this stage is a diverse collection of textual and non-textual data, encompassing sources
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Figure 3: The group routing distribution across three configurations with different group numbers g. As the
number of groups decreases, the average number of adjugate experts activations decreases.

including web content, books, academic papers, social media, encyclopedias, mathematics, and programming
code. In total, this high-quality corpus consists of approximately 400 billion tokens.

4.2 Evaluation Benchmarks
Our comprehensive evaluation of the base models assesses five core capabilities: general knowledge, scientific
knowledge, reasoning, mathematics, and coding. The evaluation is conducted using 13 distinct benchmarks:

• General Tasks: MMLU (Hendrycks et al., 2020)(5-shot), MMLU-Pro (Wang et al., 2024a)(5-shot,
CoT), CMMLU (Li et al., 2023)(5-shot), SuperGPQA (Du et al., 2025)(5-shot), C-Eval (Huang et al.,
2023)(5-shot), and BBH (Suzgun et al., 2022)(3-shot, CoT).

• Math & STEM Tasks: GSM8K (Cobbe et al., 2021)(4-shot, CoT), MATH (Hendrycks et al., 2021)(4-
shot, CoT), and GPQA-Diamond (Rein et al., 2024)(5-shot).

• Coding Tasks: HumanEval+ (Liu et al., 2023)(0-shot), MBPP+ (Liu et al., 2023)(0-shot), MultiPL-
E (Cassano et al., 2023)(0-shot)(Python, C++, Java, PHP, TypeScript, C#, Bash, JavaScript), and
CRUX-O (Gu et al., 2024)(1-shot, CoT).

4.3 Architecture Exploration
We explored several key design choices for the model architecture, focusing on the configuration of the expert
groups and the scaling factor in our Grove MoE architecture. The architecture of the shared parallel experts
{Aj}

g
j=1 adopts the design established in Qwen3 MoE architecture (Yang et al., 2025). Architectural explo-

ration is conducted using 50B tokens sampled from the mid-training dataset, with evaluations performed
across diverse task types. The exploration is based on the Qwen3-30B-A3B-Base model (Yang et al., 2025),
using direct mid-training without upcycling as the baseline.

Expert Groups. As detailed in Table 1, we evaluate the impact of expert group configurations on model
performance while maintaining approximately 33B total parameters. Three configurations are compared:
(1) g = 64, h = 128; (2) g = 32, h = 256; and (3) g = 16, h = 512, where h denotes the intermediate
dimension of {Aj}

g
j=1. For general knowledge, language understanding, and code generation, configuration

with g = 64, h = 128 achieves optimal performance. Meanwhile, a configuration with g = 16, h = 512
yields superior results for complex mathematical reasoning and STEM tasks. Notably, three configurations
outperform the baseline in terms of average performance, demonstrating the effectiveness of our Grove MoE
architecture for expanding model capacity.

Scaling Factor. Table 2 evaluates the influence of the expert output scaling factor λ. For general knowledge
and language understanding, λ = 0.05 achieves peak performance. For mathematics and STEM tasks, both
λ = 0.05 and λ = 0.20 excel, while λ = 0.20 is optimal for code generation. In general, Grove MoE with a
smaller scaling factor outperforms the baseline across multiple tasks.

Group Routing Analysis. To analyze the group routing distribution, we sample 1 million tokens from the
mid-training dataset. For an LLM with n = 128 experts, Figure 3 illustrates the distribution across three
configurations. With a large number of groups (g = 64), expert activation is broadly distributed, with most
experts assigned to 7–8 groups. In contrast, configurations with fewer groups (g = 32 and g = 16) exhibit
highly consolidated expert activation. This consolidation directly impacts computational efficiency. With

6



Table 3: Comparison among GroveMoE-Base and other strong open-source baselines. The highest and
second-best scores are shown in bold and underlined, respectively.

Mistral-Small-3.1
Base-2503

Gemma3-27B
Base

Qwen2.5-32B
Base

Qwen3-30B-A3B
Base

Llama4-Scout
Base

GroveMoE
Base

Architecture Dense Dense Dense MoE MoE Grove MoE
# Total Params 24B 27B 32B 30B 109B 33B
# Activated Params 24B 27B 32B 3B 17B 3.14B-3.28B

General Tasks

MMLU 81.65 79.89 83.50 81.58 79.08 82.86
MMLU-Pro 55.67 52.97 59.04 59.58 57.32 59.06
CMMLU 74.85 70.17 88.17 80.63 76.05 86.75
SuperGPQA 30.47 30.15 35.80 36.10 27.54 38.74
BBH 83.46 79.19 84.30 81.58 82.60 82.09
C-Eval 72.81 70.00 86.96 87.82 74.80 87.84

Math & STEM Tasks

GSM8K 85.90 82.71 90.45 89.39 86.43 90.83
MATH 43.90 49.80 60.42 59.75 51.34 64.82
GPQA-Diamond 39.90 36.36 41.41 39.39 37.54 41.92

Coding Tasks

HumanEval+ 60.98 57.32 78.05 83.54 64.63 85.98
MBPP+ 71.16 69.84 73.81 71.96 69.84 76.19
MultiPL-E 27.32 48.20 52.57 61.76 48.53 60.38
CRUX-O 50.38 60.12 67.88 67.20 59.54 70.25

the g = 64 configuration, the average number of activated parameters is 3.26B, reducing computation by
approximately 5%. As the number of groups decreases, the computational savings increase. For the g = 16
configuration, the savings reach approximately 20%.

4.4 Hyper-Parameters
The GroveMoE-Base model is trained based on Qwen3-30B-A3B-Base (Yang et al., 2025). We employ the
AdamW optimizer (Loshchilov & Hutter, 2017) with β1 = 0.9, β2 = 0.95, weight decay of 0.1, and gradient
clipping at 1.0. Training uses a maximum sequence length of 8192 tokens, with the model trained on 400
billion tokens at a batch size of 16 million tokens. During the mid-training stage, we employ a cosine learning
rate scheduler to decay the learning rate from 1× 10−4 to 5× 10−5. Consistent with our architectural analysis
in Section 4.3, we configure the {Aj}

g
j=1 modules within the Grove MoE layer with group number g = 64,

intermediate size h = 128, and scaling factor λ = 0.05.

4.5 Mid-Training Evaluation
For the base model baselines, we compare our GroveMoE-Base models with leading open-source base models,
including Mistral-Small-3.1-Base-2503 (Mistral AI, 2025), Gemma3-27B-Base (Gemma et al., 2025), Qwen2.5-
32B-Base (Yang et al., 2024), Qwen3-30B-A3B-Base (Yang et al., 2025), and Llama4-Scout-Base (Meta-AI, 2025).
All models are evaluated using the same evaluation pipeline and the widely used evaluation settings (Yang
et al., 2024; 2025) to ensure fair comparison.

As depicted in Table 3, our GroveMoE-Base model, built on the Grove MoE architecture, achieves a strong
balance of performance and efficiency. Our Grove MoE architecture enables operation with fewer acti-
vated parameters than dense models and achieves greater parameter efficiency than other MoE baselines.
GroveMoE-Base excels at complex reasoning, surpassing all competing baselines in Math & STEM and coding
benchmarks to achieve the highest average scores. In addition to these advanced reasoning capabilities,
GroveMoE-Base is highly competitive in general tasks. It matches the performance of Qwen2.5-32B-Base, a
dense model with a similar total parameter count, while maintaining its advantage in activation efficiency.

Notably, GroveMoE-Base is developed based on Qwen3-30B-A3B-Base. As shown in Table 3, the Grove MoE
architecture facilitates an efficient expansion of model capacity with only a minor additional computational
cost. The Grove MoE architecture allows the model to preserve foundational knowledge while providing
dedicated resources to master new, complex skills.
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Table 4: Comparison among GroveMoE-Inst and other strong open-source non-reasoning baselines. The
highest and second-best scores are shown in bold and underlined, respectively.

Mistral-Small-3.2
Instruct-2506

Gemma3-27B
IT

Qwen3-32B
Non-Thinking

Qwen3-30B-A3B
Non-Thinking Llama4-Scout GroveMoE

Inst

Architecture Dense Dense Dense MoE MoE Grove MoE
# Total Params 24B 27B 32B 30B 109B 33B
# Activated Params 24B 27B 32B 3B 17B 3.14B-3.28B

General Tasks

MMLU 80.29 75.97 82.93 80.12 81.88 88.04
MMLU-Pro 68.11 67.10 68.25 63.30 64.92 72.78
CMMLU 74.02 65.82 84.63 83.13 76.12 86.66
SuperGPQA 37.53 35.63 43.04 40.50 42.02 47.69
BBH 85.51 85.79 85.45 82.55 77.37 88.42
DROP 86.02 87.81 84.02 86.38 88.26 88.84
C-Eval 72.01 67.31 87.53 85.95 74.69 87.60
AGIEval 58.24 53.63 63.64 65.27 62.31 82.19

Alignment Tasks

IFEval 82.52 86.14 85.27 84.55 85.57 86.54
Arena-Hard 83.87 89.38 90.49 88.33 73.49 92.01

Math & STEM Tasks

MATH 84.18 85.82 85.26 84.68 81.46 90.56
MATH-500 86.50 87.80 87.40 88.70 82.60 94.60
Omni-MATH 33.40 33.30 31.80 33.70 25.78 43.50
AIME24 36.88 29.58 27.71 28.33 28.60 54.58
AIME25 28.12 23.12 22.92 21.67 10.00 44.38
GPQA-Diamond 49.94 45.33 53.60 51.71 55.56 61.30
OlympiadBench 61.89 59.85 59.52 60.26 56.11 71.22

Coding & Agent Tasks

HumanEval+ 81.94 78.81 82.93 84.15 79.88 90.24
MBPP+ 73.54 73.83 72.75 75.16 70.37 78.31
MultiPL-E 69.49 65.50 68.62 66.04 45.00 74.53
LiveCodeBench v5 25.90 26.75 31.44 28.89 25.45 33.38
LiveCodeBench v6 32.25 30.86 28.57 29.43 32.04 34.60
BFCL v3 (Live) 78.21 75.31 75.09 73.69 45.41 76.11

5 Post-Training
5.1 Supervised Fine-Tuning
Following the mid-training stage, the GroveMoE-Base model undergoes supervised fine-tuning (SFT). This
stage is crucially dependent on the training data. Given the scarcity and high annotation cost of human-
generated data, synthetic data has become increasingly important. Our SFT dataset is constructed from a
seed set of 1–2 million instances, comprising human annotations and open-source materials. This initial
dataset is then substantially expanded through a data synthesis pipeline.

Our data synthesis process begins by generating novel prompts using methods inspired by Magpie-style
approaches (Xu et al., 2024) and OSS-Instruct (Wei et al., 2023). We then apply rejection sampling (Grattafiori
et al., 2024) to produce candidate responses using various LLMs (Yang et al., 2025; Google DeepMind, 2025;
Hurst et al., 2024). To ensure high data quality, we employ a multi-stage filtering process. Initially, rule-based
filters are applied to reasoning-intensive data, such as code, mathematics, and logic problems. Subsequently,
all data types undergo a final assessment by an LLM-based evaluator, which uses a detailed rubric to verify
the response quality and relevance. This rigorous data curation process yields a robust dataset for SFT.

5.2 Evaluation Benchmarks
To comprehensively evaluate the quality of instruction-tuned models, we evaluate LLMs on a series of
post-training benchmarks. The post-training benchmarks can be categorized into several dimensions:
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Figure 4: Evaluation results of SFT on various benchmarks. ∆ indicates the performance improvement of SFT
trained with GroveMoE-Base over Qwen3-30B-A3B-Base.

• General Tasks: For general language understanding tasks, we utilize various benchmarks including
MMLU (Hendrycks et al., 2020), MMLU-Pro (Wang et al., 2024a), CMMLU (Li et al., 2023), SuperG-
PQA (Du et al., 2025), BBH (Suzgun et al., 2022), DROP (Dua et al., 2019), C-Eval (Huang et al., 2023),
and AGIEval (Zhong et al., 2023).

• Alignment Tasks: To evaluate how well the model aligns with human preferences, we employ
a suite of specialized benchmarks. For instruction-following performance, we report the average
prompt-level and instruction-level strict accuracy of IFEval (Zhou et al., 2023). To assess alignment
with human preferences on general topics, we utilize Arena-Hard (Li et al., 2024).

• Math & STEM Tasks: For evaluating mathematical reasoning skills, we employ MATH (Hendrycks
et al., 2021), MATH-500 (Lightman et al., 2023), Omni-MATH (Gao et al., 2024), AIME24 (AIME,
2025), and AIME25 (AIME, 2025). For STEM tasks, we utilize GPQA-Diamond (Rein et al., 2024) and
OlympiadBench (He et al., 2024) as evaluation benchmarks. For AIME problems, we sample 16 times
for each question and take the average accuracy as the final score. For GPQA-Diamond, we sample 8
times for each query and report the average accuracy.

• Coding & Agent Tasks: To test the LLM’s proficiency in coding and agent-based tasks, we use
HumanEval+ (Liu et al., 2023), MBPP+ (Liu et al., 2023), MultiPL-E (Cassano et al., 2023), Live-
CodeBench (Jain et al., 2024) (v5, 2024.10-2025.02 and v6, 2025.02-2025.05), and BFCL v3 (Live) (Yan
et al., 2024). For BFCL v3 (Live), all models are evaluated using the prompt format.

Notably, we configure the maximum output length to 16K to avoid overly lengthy output for non-reasoning
LLMs during the evaluation process (Yang et al., 2025).

5.3 Hyper-Parameters
The post-training stage uses the AdamW optimizer (Loshchilov & Hutter, 2017), with β1 = 0.9, β2 = 0.95,
weight decay of 0.1, and gradient clipping at 1.0. During the post-training stage, we employ a cosine learning
rate scheduler with a learning rate of 5× 10−6 that gradually decays to a minimum of 1× 10−6.

5.4 Post-Training Evaluation
We compare our GroveMoE-Inst with leading open-source LLMs, including Mistral-Small-3.2-Instruct-
2506 (Mistral AI, 2025), Gemma3-27B-IT (Gemma et al., 2025), Qwen3-32B (Yang et al., 2025), Qwen3-30B-
A3B (Yang et al., 2025), and Llama4-Scout (Meta-AI, 2025).

As shown in Table 4, GroveMoE-Inst establishes excellent performance across a comprehensive set of
benchmarks, maintaining high parameter efficiency. In general and alignment tasks, the model consis-
tently outperforms its counterparts, securing the highest scores on all benchmarks. The superiority of our
GroveMoE-Inst is particularly pronounced in mathematics and STEM, where GroveMoE-Inst ranks first
across all listed benchmarks, highlighting its powerful reasoning capabilities. Furthermore, GroveMoE-Inst
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demonstrates exceptional performance in coding and agent-based tasks. It surpasses other baselines on most
coding & agent benchmarks, which underscores its advanced skills in code generation and problem-solving.

5.5 Effectiveness of GroveMoE-Base
To evaluate the effectiveness of our GroveMoE-Base model, we applied the same post-training strategy to a
comparable model, Qwen3-30B-A3B-Base (Yang et al., 2025), for a direct comparison.

As shown in Figure 4, the instruction-tuned model derived from GroveMoE-Base consistently outperforms
its Qwen3-30B-A3B-Base counterpart across the vast majority of tasks, highlighting its strong potential as a
foundation model. Specifically, the GroveMoE-Base model achieves higher scores on nearly all general and
alignment benchmarks. The advantage is further pronounced in specialized domains, where it significantly
outperforms the Qwen model on most mathematics and STEM benchmarks. Furthermore, its superiority
extends to code generation and agent-based tasks, where it secures stronger results on key benchmarks.

In summary, these results demonstrate that GroveMoE-Base is a more powerful foundation model. Its larger
model capacity enables fine-tuned derivatives to achieve superior performance across a wide spectrum of
domains, including general knowledge, mathematics, and coding.

5.6 Deployment of GroveMoE-Inst
The inference speed of GroveMoE-Inst is approximately 30% slower than the Qwen3-30B-A3B (Yang et al.,
2025) baseline in our SGLang (sgl-project, 2025) implementation, an overhead that significantly exceeds the
theoretical maximum 10% increase in activated parameters. This discrepancy arises because our implementa-
tion uses the generic MoE kernel (namely fused-moe) of SGLang for accessibility, which requires two separate
kernel calls per GroveMoE layer. A customized and unified kernel designed to process both expert types in
one operation would mitigate this latency and align performance more closely with theoretical expectations.
The development of such a kernel is our key priority for future efficiency improvements.

6 Conclusion
This paper introduces GroveMoE models, efficient and open-source LLMs built upon the Grove MoE
architecture, which incorporates a novel mechanism for dynamic computation allocation. The Grove MoE
architecture improves computational efficiency by dividing experts into groups, each with an adjugate expert.
This design ensures that shared computations are performed only once per group, even when multiple
experts are activated. GroveMoE-Base and GroveMoE-Inst are 33B-parameter models developed based on
the Qwen3-30B-A3B-Base model using our Grove MoE architecture during the mid-training and post-training
stage. It dynamically activates 3.14–3.28B parameters per token. Empirical evaluations demonstrate that our
GroveMoE models, including Base and Inst models, achieve performance comparable to SOTA open-source
models of similar or even larger sizes, thereby validating the effectiveness of the Grove MoE architecture.

Limitations
Although our Grove MoE architecture provides a solid foundation, two primary limitations constrain its
current potential and guide our future research. The first limitation stems from a scarcity of long-CoT data
within the mid-training corpus. This data deficiency curtails the model’s capacity for advanced reasoning,
creating a capability gap compared to instruction-tuned LLMs that possess stronger foundational reasoning
abilities, such as Qwen3-30B-A3B-2507 (Yang et al., 2025), etc. The second limitation is the exclusive reliance
on rejection sampling for model refinement, without the integration of RL techniques. While rejection
sampling has been effective, we anticipate that incorporating RL methods will significantly enhance the
model’s overall capabilities. This remains a key objective for future development.
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Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 Technical Teport. arXiv preprint
arXiv:2503.19786, 2025.

Google DeepMind. Gemini2.5 Pro. https://deepmind.google/technologies/gemini/pro/, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The Llama 3 Herd of Models. arXiv
preprint arXiv:2407.21783, 2024.

Peter Greenhalgh. big.LITTLE Processing with ARL Cortex-A15 & Cortex-A7. ARM White paper, 17, 2011.

Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I Wang. Crux-
Eval: A Benchmark for Code Reasoning, Understanding and Execution. arXiv preprint arXiv:2401.03065,
2024.

Yongxin Guo, Zhenglin Cheng, Xiaoying Tang, Zhaopeng Tu, and Tao Lin. Dynamic Mixture of Experts: An
Auto-Tuning Approach for Efficient Transformer Models. arXiv preprint arXiv:2405.14297, 2024.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, et al. OlympiadBench: A Challenging Benchmark for Promoting AGI with
Olympiad-Level Bilingual Multimodal Scientific Problems. arXiv preprint arXiv:2402.14008, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
Measuring Massive Multitask Language Understanding. arXiv preprint arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. Measuring Mathematical Problem Solving with the Math Dataset. arXiv preprint
arXiv:2103.03874, 2021.

Quzhe Huang, Zhenwei An, Nan Zhuang, Mingxu Tao, Chen Zhang, Yang Jin, Kun Xu, Liwei Chen, Songfang
Huang, and Yansong Feng. Harder Tasks Need More Experts: Dynamic Routing in MoE Models. arXiv
preprint arXiv:2403.07652, 2024.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu, Chuancheng
Lv, Yikai Zhang, Yao Fu, et al. C-Eval: A Multi-Level Multi-Discipline Chinese Evaluation Suite for
Foundation Models. Advances in Neural Information Processing Systems, 36:62991–63010, 2023.

Bi Huo, Bin Tu, Cheng Qin, Da Zheng, Debing Zhang, Dongjie Zhang, En Li, Fu Guo, Jian Yao, Jie Lou, et al.
dots.llm1 Technical Report. arXiv preprint arXiv:2506.05767, 2025.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
Akila Welihinda, Alan Hayes, Alec Radford, et al. GPT-4o System Card. arXiv preprint arXiv:2410.21276,
2024.

11

https://deepmind.google/technologies/gemini/pro/


Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. LiveCodeBench: Holistic and Contamination Free Evaluation of
Large Language Models for Code. arXiv preprint arXiv:2403.07974, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford,
Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al. Mixtral of Experts.
arXiv preprint arXiv:2401.04088, 2024.

Peng Jin, Bo Zhu, Li Yuan, and Shuicheng Yan. MoE++: Accelerating Mixture-of-Experts Methods with
Zero-Computation Experts. arXiv preprint arXiv:2410.07348, 2024.

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, Carlos Riquelme Ruiz, Basil Mustafa, Joshua Ainslie,
Yi Tay, Mostafa Dehghani, and Neil Houlsby. Sparse Upcycling: Training mixture-of-experts from dense
checkpoints. In International Conference on Learning Representations (ICLR), 2023.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai Zhao, Yeyun Gong, Nan Duan, and Timothy Bald-
win. CMMLU: Measuring Massive Multitask Language Understanding in Chinese. arXiv preprint
arXiv:2306.09212, 2023.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E Gonzalez, and Ion
Stoica. From Crowdsourced Data to High-Quality Benchmarks: Arena-Hard and Benchbuilder Pipeline.
arXiv preprint arXiv:2406.11939, 2024.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike, John
Schulman, Ilya Sutskever, and Karl Cobbe. Let’s Verify Step by Step. In The Twelfth International Conference
on Learning Representations, 2023.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng,
Chenyu Zhang, Chong Ruan, et al. DeepSeek-V3 Technical Report. arXiv preprint arXiv:2412.19437, 2024.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is Your Code Generated by ChatGPT
Really Correct? Rigorous Evaluation of Large Language Models for Code Generation. Advances in Neural
Information Processing Systems, 36:21558–21572, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. arXiv preprint arXiv:1711.05101,
2017.

Meta-AI. The Llama 4 herd: The beginning of a new era of natively multimodal AI innovation, 2025. URL
https://ai.meta.com/blog/llama-4-multimodal-intelligence/.

Mistral AI. Mistral-Small-3.1. https://mistral.ai/news/mistral-small-3-1, 2025.

Taishi Nakamura, Takuya Akiba, Kazuki Fujii, Yusuke Oda, Rio Yokota, and Jun Suzuki. Drop-Upcycling:
Training Sparse Mixture of Experts with Partial Re-Initialization. arXiv preprint arXiv:2502.19261, 2025.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian
Michael, and Samuel R Bowman. GPQA: A Graduate-Level Google-Proof Q&Q Benchmark. In First
Conference on Language Modeling, 2024.

sgl-project. SGLang. https://github.com/sgl-project/sglang, 2025.

Jianlin Su. MoE Travels 3, 2025. URL https://kexue.fm/archives/10757.

Xingwu Sun, Yanfeng Chen, Yiqing Huang, Ruobing Xie, Jiaqi Zhu, Kai Zhang, Shuaipeng Li, Zhen Yang,
Jonny Han, Xiaobo Shu, et al. Hunyuan-Large: An Open-Source MoE Model with 52 Billion Activated
Parameters by Tencent. arXiv preprint arXiv:2411.02265, 2024.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha
Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging Big-Bench Tasks and Whether Chain-
of-Thought Can Solve Them. arXiv preprint arXiv:2210.09261, 2022.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming Ren,
Aaran Arulraj, Xuan He, Ziyan Jiang, et al. MMLU-Pro: A More Robust and Challenging Multi-Task
Language Understanding Benchmark. In The Thirty-eight Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2024a.

12

https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://mistral.ai/news/mistral-small-3-1
https://github.com/sgl-project/sglang
https://kexue.fm/archives/10757


Ziteng Wang, Jun Zhu, and Jianfei Chen. ReMoE: Fully Differentiable Mixture-of-Experts with ReLU Routing.
arXiv preprint arXiv:2412.14711, 2024b.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empowering Code
Generation with OSS-Instruct. arXiv preprint arXiv:2312.02120, 2023.

Haoyuan Wu, Haisheng Zheng, Zhuolun He, and Bei Yu. Parameter-Efficient Sparsity Crafting from Dense
to Mixture-of-Experts for Instruction Tuning on General Tasks. In Empirical Methods in Natural Language
Processing (EMNLP), 2024.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and Bill Yuchen
Lin. Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing. arXiv
preprint arXiv:2406.08464, 2024.

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun Zhang, Shishir G. Patil, Ion Stoica, and Joseph E.
Gonzalez. Berkeley Function Calling Leaderboard. https://gorilla.cs.berkeley.edu/blogs/8 berkeley
function calling leaderboard.html, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. Qwen2.5 Technical Report. arXiv preprint arXiv:2412.15115, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen
Huang, Chenxu Lv, et al. Qwen3 Technical Report. arXiv preprint arXiv:2505.09388, 2025.

Zihao Zeng, Yibo Miao, Hongcheng Gao, Hao Zhang, and Zhijie Deng. AdaMoE: Token-Adaptive Routing
with Null Experts for Mixture-of-Experts Language Models. arXiv preprint arXiv:2406.13233, 2024.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen,
and Nan Duan. AGIEval: A Human-Centric Benchmark for Evaluating Foundation Models. arXiv preprint
arXiv:2304.06364, 2023.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and
Le Hou. Instruction-Following Evaluation for Large Language Models. arXiv preprint arXiv:2311.07911,
2023.

13

https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html

