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Abstract

Recent advancements have shown that reinforcement learning (RL) can substantially improve the
reasoning abilities of large language models (LLMs). The effectiveness of such RL training, how-
ever, depends critically on the exploration space defined by the pre-trained model’s token-output
distribution. In this paper, we revisit the standard cross-entropy loss, interpreting it as a specific
instance of policy gradient optimization applied within a single-step episode. To systematically
study how the pre-trained distribution shapes the exploration potential for subsequent RL, we
propose a generalized pre-training objective that adapts on-policy RL principles to supervised
learning. By framing next-token prediction as a stochastic decision process, we introduce a
reward-shaping strategy that explicitly balances diversity and precision. Our method employs a
positive reward scaling factor to control probability concentration on ground-truth tokens and a
rank-aware mechanism that treats high-ranking and low-ranking negative tokens asymmetrically.
This allows us to reshape the pre-trained token-output distribution and investigate how to provide a
more favorable exploration space for RL, ultimately enhancing end-to-end reasoning performance.
Contrary to the intuition that higher distribution entropy facilitates effective exploration, we find
that imposing a precision-oriented prior yields a superior exploration space for RL.

1 Introduction

Recent advancements have demonstrated that reinforcement learning (RL) (Bai et al., 2022; Guo et al., 2025) can
significantly enhance the reasoning capabilities of large language models (LLMs) (Google DeepMind, 2025; Guo
et al., 2025; Anthropic, 2025; Kimi et al., 2025). By utilizing verifiable rewards, such as passing unit tests or
deriving correct mathematical solutions, LLMs evolve from merely mimicking human data to actively searching for
optimal reasoning paths (Guo et al., 2025). On-policy training paradigms have proven effective in unlocking the
potential of pre-trained LLMs, prompting researchers to investigate how token output distributions influence RL.
Recent studies (Wang et al., 2025; Zhu et al., 2025b; Cui et al., 2025; Gandbhi et al., 2025) indicate that uncertainty
in chain-of-thought reasoning is concentrated within a small subset of high-entropy forking tokens that govern
pivotal decisions, while the majority of tokens exhibit low entropy. This observation underscores the critical impact
of the pre-trained model’s output distribution on subsequent RL outcomes.

Concurrently, researchers have explored next-token and next-segment reasoning objectives to derive self-supervised
signals from massive unlabeled pre-training corpora (Zelikman et al., 2024; Dong et al., 2025; Li et al., 2025;
Xing et al., 2025). Applying RL to the pre-training corpus suggests a theoretical bridge connecting pre-training
and RL. Specifically, next-token prediction can be reformulated as a reasoning task optimized via RL algorithms,
where the model receives verifiable rewards for accurately predicting the subsequent token according to a given
context. Notably, if the intermediate reasoning process is omitted, resulting in the direct generation of the answer,
this procedure becomes analogous to standard pre-training. From the perspective of policy optimization, next-token
prediction serves a foundational role by defining the initial policy distribution for subsequent RL. This distribution
establishes the model’s behavioral trajectory and implicitly constrains its exploration space, thereby determining
which reasoning paths the model prioritizes during RL.

Motivated by this connection, we revisit the cross-entropy loss for next token prediction. Although traditionally
viewed as a supervised metric, cross-entropy can be interpreted as a specific instance of policy gradient optimization
within a single-step episode (Wu et al., 2025; Ming et al., 2025). This interpretation suggests that next-token
prediction inherently permits an on-policy perspective, even though standard teacher forcing utilizes off-policy
samples drawn directly from the training corpus distribution. From an entropy perspective, cross-entropy implicitly
assigns maximal reward to the single ground-truth token while uniformly suppressing all negative tokens. Building
on this insight, we aim to establish a unified pre-training objective that subsumes cross-entropy as a special case,
enabling a systematic study of how reward configurations during pre-training influence subsequent RL dynamics.

In this paper, we propose a generalized objective that integrates on-policy training principles into supervised learning.
By formulating next-token prediction as a stochastic decision process, we expose the intrinsic reward mechanism of
cross-entropy and introduce a reward-shaping strategy. This approach explicitly regulates the trade-off between
diversity and precision during pre-training, rather than deferring this balance to subsequent RL stages. Specifically,

* Project Lead.


https://arxiv.org/abs/2512.22955v1

we introduce a positive reward scaling factor to control the concentration of probability mass on ground-truth tokens,
and we differentiate between high-ranking and low-ranking negative tokens to modulate suppression asymmetrically.
This strategy allows us to reshape the token output distribution and systematically analyze the relationship between
pre-training objectives and RL exploration. Contrary to the conventional intuition that higher distribution entropy
facilitates effective exploration, our findings reveal that imposing a precision-oriented prior yields a superior
exploration space for RL, ultimately enhancing end-to-end reasoning performance.

Our main contributions are summarized as follows:
» We propose a generalized pre-training objective for next-token prediction that incorporates a reward-shaping
strategy, utilizing a positive reward scaling factor and rank-aware negative suppression.

* We investigate how reshaping the token output distribution during pre-training modulates the exploration space
for subsequent RL, thereby impacting end-to-end reasoning performance.

* We demonstrate that a precision-oriented pre-training prior provides a more effective initialization for RL than
high-entropy distributions, leading to improved reasoning capabilities.

2 Method

2.1 Next Token Prediction
Autoregressive LLMs are typically trained using a next-token prediction objective. This process can be formulated
as a sequential decision-making problem where the LLM functions as a stochastic policy 7tg.

Let X = {x1,xp,- -+ ,x,} denote a sequence of n tokens. At step ¢, the state s; is defined by the prefix X4 =
{x1,%2,+ -+ ,x;_1}. The action a; corresponds to the next token, sampled from the vocabulary V according to the
policy 7ty(- | s¢). The training objective optimizes the parameters 6 to maximize the expected cumulative reward:

J(6) = Evur, [tér(st,at)}, M

where T = (s1,41,52, 4, - + ) represents a trajectory sampled from 7tg, and r(s;, a;) is the scalar reward received
for taking action a; in state s;. The policy gradient can be derived as:

VoJ(6) = Ecvry | Y- R(T)Vglog mo(ar | 51)], o)
t=1

where R(7) = Y.}'_, r(sy,ay). To reduce variance without introducing bias, the total return R(7) is typically
replaced by the return-to-go Gy = Y_ji_, 7(sy, ay ), often incorporating a baseline b(s;) for variance reduction:

n

VoJ(6) = Eonry | Y.(Gi = b(s0))Valog mo(a | 1) 3)

Building upon Equation (3), we treat the generation of a single token as a complete episode (Ming et al., 2025). The
objective for a fixed state s¢ simplifies to:

Je(0 | st) = By (s [r(st,a1)], ©)

yielding the gradient:
VGLL(G | St) = Eﬂr’vﬂe("st) [F(St,llt)VQ log 7'[9(11t | St)] . (&)

Crucially, for Equation (5) to remain consistent with the cumulative reward structure of Equation (3), the reward
r(st, a;) must depend solely on the immediate state-action pair.

2.2 Revisiting Cross-Entropy

LLM pre-training is generally cast as a supervised learning process designed to maximize the log-likelihood of the
ground-truth token x; given the context s; = X4:

Jee(0) = log 7o (xt | st). (©6)

The gradient of this objective explicitly maximizes the probability of the ground-truth token:
VoJce(0) = Volog o (xt | st). )
We can express this gradient as an expectation over the full policy distribution 774(- | s¢), encompassing both
_ Vemp(x)

positive (a; = x;) and negative (a; 7 x¢) tokens. By invoking the log-derivative identity Vg log 7y (x) ey



and introducing the indicator function 1(a; = x;), we expand the gradient into a summation over the vocabulary V:

1
Volce(0) = mveﬂe(xt | st)

1

= ]]_ = V . 8
7T9(xt | St) a eV <at xt) Gne(at | St) ®)

We recover the probability density using the substitution Vg7ty(a¢ | s¢) = mg(ar | st) Vg log mg(ay | st), and then
form an expectation:

]].(tlt:Xt)
\% 0) = mg(as | s¢) | ———=Vyglog mg(a; | s
oJce(0) a,;V o(ar | se) o(ar [50) " ° g 19 (as | st)
= Eﬂtwﬂe('\st) [T’CE(St,ﬂt)VQ log n@(at | St)] . (9)

In supervised training, the ground-truth token x; is deterministically defined by the dataset. Consequently, the
indicator 1(a; = x;) evaluates the action a; against a static property of s;, ensuring that the derived intrinsic reward
depends exclusively on information available at step . Comparing Equation (9) with Equation (5) reveals the
intrinsic reward function of cross-entropy:

]l(at = xt)

, 10
7T9(11t | St) (10

ree(se, ar) = sg(

where sg(-) denotes the stop-gradient operator. Equation (10) demonstrates that when the sampled action matches

the ground truth (a; = x;), the reward is scaled by the inverse probability m On the contrary, for all negative
tokens, the intrinsic reward is exactly 0. Unlike RL scenarios where negative actions are often explicitly penalized,
cross-entropy achieves suppression of negative tokens implicitly through the Softmax normalization constraint

Y. mg(ar | s) = 1. By increasing the probability of the positive tokens via positive rewards, the probabilities of
;meV
competing tokens are forced to decrease.

2.3 Diversity or Precision

As derived in Equation (10), the intrinsic reward of the cross-entropy objective implicitly balances diversity and
precision. To explicitly regulate the trade-off between these two objectives, we propose a generalized reward
function designed to independently control the influence of positive and negative tokens.

First, we introduce a modulating factor to scale the reward associated with the ground-truth token. Let a; denote the
generated token and x; the ground truth, we define the modified positive reward as:

1

) -(als)P
s b

Ppos (st at) = sg((

where (1 — 7g(a; | s¢))P serves as a positive reward scaling factor. Equation (11) facilitates the control of global
entropy. Specifically, when B < 0, the reward is amplified relative to the baseline (8 = 0). This produces large
gradient updates that aggressively concentrate probability mass onto the ground truth, collapsing the distribution
and minimizing global entropy. Conversely, B > 0 attenuates the reward signal. In this regime, the model is less
penalized for assigning a lower probability to the ground truth, allowing the policy to maintain a flatter distribution
with higher entropy.

Second, while standard cross-entropy assigns zero reward to all negative tokens, we propose shaping the negative
distribution to control local entropy. Let It = TopK(7tg(- | s¢), k) denote the set of the top-k predicted tokens, we
define the negative reward as:

Freg (St, at) =A-1(a; € Kt Aay # xt) +A- 1(ar & Kt Nay # xy). (12)

As shown in Equation (12), we assign a reward A to high-ranking negative tokens to prevent the model from
becoming overly confident in the ground truth alone, thereby reserving probability mass for plausible alternatives.
Meanwhile, to suppress low-probability tail tokens, we apply a reward A to tokens falling outside K¢, forcing the
distribution to concentrate on the head.

Finally, the generalized reward function for the single-step objective is defined as:
F(st,at) = Fpos(St,ar) - L(ar = xt) + Feg (S, a¢) - L(ar # xt). (13)

Notably, the setting § = 0, A =0, A = 0 recovers standard cross-entropy.



3 Experiments

3.1 Training Settings

The training pipeline proceeds in three stages: pre-training, mid-training, and RLVR. Adhering to the Qwen3 (Yang
et al., 2025), we develop LLMs using both dense and MoE architectures. Specifically, we develop a series of LLMs,
which include 1B and 4B dense models, as well as 5SB-A0.3B and 10B-A0.5B MoE models. Moreover, we conduct
the complete training pipeline on the 4B and 10B-A0.5B models, while the 1B and 5B-A0.3B models undergo the
pre-training stage only. More training details are provided in Section A and Section B.

Training Data. For pre-training, we curate a corpus of 500B tokens primarily focused on general knowledge. This is
followed by a mid-training stage comprising 100B tokens, which incorporates approximately 5% synthetic data and
significantly increases the proportion of reasoning-oriented content. Crucially, we deliberately exclude the synthetic
long-reasoning data from all training stages to accurately observe the activation trends of the model’s long-CoT
reasoning capabilities. The RL stage prioritizes mathematical reasoning tasks, as the emergence of long-reasoning
capabilities is typically associated with these domains.

Hyperparameters. Hyperparameters are maintained across the pre-training and mid-training stages. Our goal is to
investigate how different reward shaping strategies influence end-to-end performance. Consequently, we perform
specific reward configurations for positive tokens (8 = —0.25 and 8 = 0.5) and negative tokens (;\ =—01,A=
0,k =100and A = 0,A = 0.1,k = 100). Employing these distinct hyperparameter configurations allows us to
isolate the specific effects of positive and negative reward signals.

3.2 Evaluation Settings

Evaluation of Base Models. Our comprehensive evaluation of base models assesses five core capabilities: general
knowledge, logic reasoning, commonsense reasoning, mathematics, and coding. The evaluation is conducted using
19 distinct benchmarks:

¢ General Knowledge: MMLU (Hendrycks et al., 2020)(4-shot, CoT), MMLU-Pro (Wang et al., 2024)(5-
shot, CoT), TriviaQA (Joshi et al., 2017)(5-shot), and NaturalQuestions (Kwiatkowski et al., 2019)(5-shot).

¢ Commonsense Reasoning: Hellaswag (Zellers et al., 2019)(0-shot), SIQA (Sap et al., 2019)(0-shot),
PIQA (Bisk et al., 2020)(0-shot), WinoGrande (Sakaguchi et al., 2021)(0-shot), OpenBookQA (Mihaylov
et al., 2018)(5-shot), and CommonsenseQA (Talmor et al., 2018)(5-shot)

¢ Logic Reasoning: ARC-Easy (Clark et al., 2018)(0-shot), ARC-Challenge (Clark et al., 2018)(0-shot),
and BBH (Suzgun et al., 2022)(3-shot, CoT)

¢ Mathematics: GSM8K (Cobbe et al., 2021)(4-shot, CoT), MATH-500 (Lightman et al., 2023)(4-shot,
CoT), Minerva (Lewkowycz et al., 2022)(4-shot, CoT), and OlympiadBench (He et al., 2024)(0-shot).

¢ Coding: HumanEval+ (Liu et al., 2023)(0-shot) and MBPP+ (Liu et al., 2023)(3-shot).

Specifically, general knowledge and commonsense reasoning evaluate the model’s knowledge-base capabilities,
whereas logical reasoning, mathematics, and coding probe its reasoning-base capabilities. Moreover, we employ
the Pass @k metric to evaluate the model’s upper-bound capability for tasks requiring mathematical reasoning and
code generation. Pass @k measures the probability that at least one correct solution is present within k independent
attempts. We utilize the unbiased estimator of Pass@k (Chen, 2021), which is defined as:

)
(%)
where m represents the total number of sampled responses generated per prompt, and ¢ denotes the count of correct
responses among those m samples. We sample m = 128 responses with temperature 0.7 and top-p 0.95 and report

Pass@64 metric. Notably, we configure the maximum output length to 4K for pre-trained models and 16K for
mid-trained models.

Pass@k =1 — (14

Evaluation of RL Models. For RL models evaluation, we employ various mathematics benchmarks, including
AMC23 (MAA, b), AIME (MAA, a), MATH-500 (Lightman et al., 2023), Minerva (Lewkowycz et al., 2022), and
OlympiadBench (He et al., 2024). We sample 128 responses per problem and report Avg@128, Cons@128, and
Pass @64 metrics. Specifically, Avg @128 represents the average accuracy across all 128 samples, while Cons @128
refers to the majority voting accuracy. Similarly, we configure the maximum output length to 16K for RL models.

3.3 Pre-Training

Our analysis of the proposed generalized training objective reveals that it effectively regulates the trade-off between
diversity and precision by strategically varying reward configurations. As illustrated in Figure 1 and Figure 2,
perplexity (PPL) consistently converges to comparable low values across both dense (1B, 4B) and MoE (5B-A0.3B,
10B-A0.5B) architectures. This demonstrates that, within a specific range, modifying the reward function modulates
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Figure 1: Changes of PPL and entropy during pre-training across 1B and 4B dense models, developed based on
different configurations.
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Figure 2: Changes of PPL and entropy during pre-training across 5B-A0.3B and 10B-A0.5B MoE models, developed
based on different configurations.

training dynamics without compromising final predictive accuracy. The parameter 3 serves as a potent global entropy
regulator. Specifically, setting § < O significantly reduces entropy, resulting in a more peaked and confident token
distribution by amplifying rewards for ground turth tokens. Conversely, § > 0 maintains higher entropy and a flatter
distribution, thereby promoting diversity in the generated output. Meanwhile, the parameters A and A facilitate local
entropy fine-tuning. These parameters shape the token distribution by either rewarding (A=0,A=0.1,k = 100)
or penalizing (A =—0.1,A =0,k = 100) negative tokens, enabling granular control over the training process.

Furthermore, we analyze the evolution of model performance during pre-training to investigate the dynamics and
specific impact of the proposed reward function. As depicted in Figure 3, larger models consistently achieve
substantially higher final performance than smaller models after processing an equivalent number of training tokens.
This confirms that explicitly regulating the diversity-precision trade-off is an orthogonal mechanism that does
not interfere with the fundamental scaling properties of language models. Crucially, configurations that prioritize
lowering global entropy (B < 0) or maintaining high local entropy (A = —0.1,A = 0,k = 100) demonstrate
superior performance and scaling behavior. Although these settings may not yield optimal initial performance in
smaller models, they exhibit enhanced growth potential as model size increases. This suggests that with greater
model capacity, strategies that promote precision, either globally via generously rewarding positive tokens or locally
by aggressively penalizing tail negative tokens, lead to better performance growth compared to the baseline.

3.4 Mid-Training

Subsequently, we evaluate the evolution of model performance during the mid-training stage, spanning from 0B
to 100B tokens. As depicted in Figure 4, the choice of B significantly influences training dynamics. We observe
a consistent trend where a negative value, specifically § = —0.25, yields the best results. This configuration
consistently outperforms the baseline (8 = 0) across both dense and MoE models in knowledge and reasoning
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Figure 3: Changes of performance during pre-training across models with various model parameters, developed
based on dense and MoE architectures under different configurations.
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Figure 4: Changes of performance during mid-training across 4B dense and 10B-A0.5B MoE models, developed
based on different configurations.

tasks. Conversely, a positive setting (8 = 0.50) does not demonstrate consistent superior performance comparing to
the baseline. Similar to the observations with 8, a slight negative adjustment appears beneficial. The configuration
A=—-01,A1=0k=100 generally matches or slightly surpasses the performance of the standard CE baseline.
However, when shifting to A = 0.1, A = 0,k = 100, performance exhibited uncertainty in knowledge-intensive
scenarios. In reasoning tasks, the performance remained comparable to the standard CE baseline.

3.5 Reinforcement Learning

Finally, we investigate the performance dynamics during the RL training stage across various actor models, as
illustrated in Figure 5 and Figure 6. Pre-trained models derived from different reward configurations exhibit distinct
output distributions, leading to significant variations in subsequent RL and end-to-end reasoning performance.
Regarding the global entropy regulator 8, we observe a consistent and robust trend across both the 4B dense and
10B-A0.5B MoE models. Specifically, the global low entropy setting (8 = —0.25) yields superior performance
trajectories. This configuration consistently outperforms the global high entropy setting across all evaluated metrics,
including Avg@128, Cons@ 128, and Pass@64. Furthermore, the configuration A= —0.1,}\ = 0,k = 100
demonstrates a significant advantage, consistently achieving the highest performance and notably surpassing the
baseline on the 10B-A0.5B MoE model. For the 4B dense model, maintaining local high entropy exhibits a
superior scaling trend compared to the baseline. In conclusion, strategies that promote precision, either globally via
generously rewarding positive tokens or locally by aggressively penalizing tail negative tokens, enables the model to
converge to higher-quality solutions, potentially providing a better exploration space for RL.

To better understand the performance divergence observed during RL, we analyze the evolution of policy entropy
and response length throughout the training process, as illustrated in Figure 7. Contrary to the expectation that higher
entropy maintains diversity, setting a higher B leads to rapid entropy collapse during the early stages of training.
Coinciding with this collapse, the response length decreases drastically, indicating a suppression of the reasoning
capability. In contrast, local high-entropy configurations exhibit greater stability. These settings effectively prevent
entropy collapse, maintaining a robust policy distribution from the onset. They demonstrate a smooth and continuous
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Figure 5: Changes of performance during RL training across various actor models, developed based on a 4B dense
architecture under different configurations.
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Figure 6: Changes of performance during RL training across various actor models, developed based on a 10B-A0.5B
MOoE architecture under different configurations.
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Figure 7: Changes of entropy and response length during RL training across various actor models, developed based
on 4B dense and 10B-A0.5B MoE architectures under different configurations.

activation of long reasoning capabilities, allowing for a steady increase in generation length and reasoning depth
without the recovery lag observed in global high entropy settings.

3.6 Pass@k Analysis of Base Models

Moreover, we analyze the Pass@k curves as k increases to estimate the upper bound of the capability of base
models. This metric relies on a delicate equilibrium between solution precision and diversity. As shown in Figure 8,
maximizing global diversity (high entropy) does not inherently yield higher Pass@k curves. Instead, superior
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Figure 8: Pass@k curve of base models on mathematics reasoning and code generation tasks, developed based on
4B dense and 10B-A0.5B MoE models under different configurations.

Pass@k scores in mathematics and coding tasks are achieved by prioritizing precision. Crucially, we observe that
this low-entropy setting does not lead to a collapse in output diversity. Rather, it maintains sufficient variation to
cover the solution space. Furthermore, the data indicate that promoting local diversity also yields better results. This
suggests that while models benefit from high precision, they simultaneously benefit from targeted local exploration.

4 Related Works

4.1 Weighted Cross-Entropy Loss

The standard cross-entropy objective can be generalized within a policy-gradient framework, where it is equivalent
to optimizing a sparse reward defined as rcg(s, ar) = 1(ar = x¢)7tg(a; | s¢)~!. Existing modifications to this
objective include smooth loss (label smoothing), which encourages diversity by allocating a uniform probability mass
to all positive tokens, and focal loss (Lin et al., 2018), which down-weights easy examples via w; = (1 — 719 (x; |
s¢))7. Our proposed generalized training objective can also formulate these established variations. In this paper, we
specifically explore two different reward configurations within this framework. Firstly, we introduce a modified

positive reward, which is equivalent to applying a state-dependent weight w; = 71g(x; | st)l’(l’"G("f‘sf))ﬂ to the
standard cross-entropy. In addition, we incorporate TopK-based negative shaping, which explicitly controls local
entropy by assigning non-zero rewards to selected actions with a; # x;.

4.2 Next Token Reasoning

Treating each token emission as a distinct episode ensures that the reward depends only on the immediate state-
action pair (s¢, a;), thereby preserving unbiased credit assignment. The framework is naturally compatible
with architectures that perform iterative internal computation prior to token emission, including latent-reasoning
models (Zelikman et al., 2024) and loop transformers (Dehghani et al., 2019; Zhu et al., 2025a). Although each
episode terminates at token emission, the state s; may encode the outcome of internal refinement cycles. Our
reward design can serve as an uncertainty-aware learning signal that can be combined with adaptive computation
policies to allocate additional internal processing steps in uncertain contexts. By explicitly shaping positive and
negative token-level rewards within a single-step policy-gradient framework, we provide a general and controllable
mechanism that natively supports reasoning-oriented architectures through principled reward design.

5 Conclusion

This study establishes a theoretical bridge between next-token prediction and RL by interpreting cross-entropy
loss as a specific instance of policy gradient optimization. To exploit this connection, we introduce a generalized
pre-training objective that utilizes a reward-shaping strategy with positive scaling and rank-aware negative rewards.
Our experiments across multiple architectures and scales reveal that regulating the diversity-precision trade-off
during pre-training modulates token entropy. Our findings indicate that precision-focused strategies (e.g., global
entropy reduction or tail-token suppression) yield superior scaling for the subsequent RL stage. These insights
provide a novel perspective on optimizing pre-training for long CoT reasoning, suggesting new directions for
sophisticated reward shaping in LLM development.
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A Experiment Details for Pre-Training and Mid-Training

A.1 Implementation Details

For both the pre-training and mid-training phases, we employ the AdamW (Loshchilov & Hutter, 2017) optimizer,
implementing a weight decay of 0.1 and applying gradient clipping at 1.0. Throughout these stages, we utilize
a warmup-stable-decay learning rate schedule with a global batch size of 16M. During the stable pre-training
stage, which encompasses S00B tokens, the learning rate warms up over 2000 steps before stabilizing at 3 x 10™%.
Subsequently, we perform mid-training on an additional 100B tokens, gradually decaying the learning rate from
3 x107%to 3 x 107°. We set the maximum sequence length to 4096 during pre-training and extend it to 16384 for
the mid-training stage. To support long-context modeling during mid-training, we increase the base frequency of
ROPE (Su et al., 2024) from 1e* to 1e°.

A.2 Model Architecture

Building upon the Qwen3 (Yang et al., 2025) architectures, we perform our experiments utilizing both dense and
MOoE architectures. Notably, we adopt an auxiliary loss free approach (Liu et al., 2024) for the training of the MoE
models. Detailed architecture settings are provided in Table 1, where E denotes the total number of experts and E,
denotes the number of active experts.

Table 1: Detailed architectures settings of dense and MoE models.

Model Mayer dmodel dffn dexpert Nhead Nkvhead E Eq
1B Dense 28 1536 4608 - 16 4 - -
4B Dense 36 2560 9728 - 32 8 - -

5B-A0.3B MoE 12 1024 - 320 32 4 384 12
10B-A0.5B MoE 16 1536 - 320 32 4 384 12

A.3 Experiment Results

We report comprehensive evaluation results to demonstrate performance progression throughout the training process.
Tables 2 to 9 present the pre-training results across various models and different training tokens. Similarly, Tables 10
to 13 summarize the performance metrics for the mid-training stage.

B Experiment Details for RL

B.1 Implementation Details

For RLVR on mathematical reasoning tasks, we employ the on-policy GRPO algorithm (Shao et al., 2024) without
KL regularization. Following Yu et al. (2025), we incorporate clip-higher and dynamic sampling strategies to
stabilize training. The process is conducted in two stages: an initial 700 steps with a sequence length of 8K, followed
by continued training at a sequence length of 16K. We maintain a batch size of 128 and a constant learning rate of
1 x 107° for two stages. During training, we sample 16 outputs per prompt at a temperature of 1.0.

B.2 Experiment Results

We provide detailed evaluation results to illustrate performance trajectories during the RL process. Tables 14 to 23
display the RL results across different models and training steps.
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Table 2: Pre-Training performance comparison across different 5 based on 1B dense models. The highest
scores at the final checkpoint across the different configurations are shown in bold.

‘ Hyperparameters ‘ B =—0.25; A=0;A=0 ‘ B=0; A=0;A=0 ‘ B = 0.50; A=0;A=0
| # Pre-Trained Tokens | 125B  250B 375B 500B | 125B 250B 375B 500B | 125B 250B  375B  500B
MMLU (Acc.) 2047 23.65 24.06 25.12 | 2085 2339 24.04 26.62 | 21.71 2426 2437 2551
General MMLU-Pro (Acc.) 8.01 9.25 9.54  10.06 | 7.63 8.23 7.98 9.02 7.85 8.55 9.44 9.59
Knowledge NaturalQuestions (EM) 3.02 4.34 4.88 5.35 2.74 4.07 4.52 5.79 2.69 3.77 4.18 5.21
8 TriviaQA (EM) 8.45 1232 1475 1603 | 865 12.63 1353 1625 | 8.35 12.39 1424 1649
Average 9.99 1239 1331 1414 | 997 12.08 12.52 1442 | 10.15 1224 13.06 14.20
Hellaswag (Acc.) 3824 44.17  46.17 4749 | 3896 4442 4626 4833 | 38.88 4395 46.83 48.06
SIQA (Acc.) 38.43 4222 4053  39.15 | 40.02 4033 4150 4232 | 39.36 40.84 42.02 4232
PIQA (Acc.) 67.36  69.53 69.70 7127 | 6790 69.75 71.00 71.11 | 67.57 69.59 70.62 70.02
Commonsense | WinoGrande (Acc.) 5170 4996 52.09 51.62 | 5249 5217 52.80 53.83 | 5343 5454 5470 53.28
Reasoning OpenBookQA (Acc.) 3140 3240 31.80 3220 | 29.80 3220 33.60 32.80 | 30.00 31.60 31.80 33.40
CommonsenseQA (Acc.) 19.66 19.00 21.13 20.80 | 19.57 21.79 19.82 20.07 | 20.15 19.41 20.72 20.56
Average 41.13 4288 4357 43776 | 4146 4344 4416 4474 | 4157 4332 4445 4461
Knowledge Average | 2556 27.64 2844 2895 | 2571 2776 2834 29.58 | 2586 27.78 2875 29.40
ARC-e (Acc.) 5274 5530 59.43 59.26 | 51.64 55.68 56.70 58.80 | 49.24 55.64 5551 58.88
Logic ARC-c (Acc.) 2534 2747 30.03 3097 | 2730 29.44 2952 29.01 | 2551 27.05 2730 27.90
Reasoning BBH (Acc.) 2347 2341 2646 26.68 | 22.13 2256 25.68 27.34 | 25.13 2249 2499 2637
Average 33.85 3539 38.64 3897 | 33.69 3589 37.30 38.38 | 3329 35.06 3593 37.72
GSMSK (Pass@64) 40.06 43.01 46.15 49.52 | 41.09 4878 4877 4876 | 4352 46.65 4658 49.98
MATH-500 (Pass @64) 34.16  37.09 39.79 38.15 | 3341 3543 37.10 3849 | 3041 39.64 40.80 38.97
Mathematics Minerva (Pass @64) 1462 1619 17.07 1576 | 1644 16771 1480 16.43 | 1494 1532 1654 15.99
OlympiadBench (Pass@64) | 20.39 22.72 2350 2235 | 21.06 21.01 21.85 21.83 | 20.83 2291 23.00 22.91
Average 2731 2975 31.63 3145 | 28.00 3048 30.63 31.38 | 2743 31.13 31.73 3196
HumanEval+ (Pass @64) 8.06 13.03 1546 1581 8.71 1215 1272 1595 | 7.68 11.92 13.67 14.55
Coding MBPP+ (Pass@64) 21.39  33.69 4036 41.70 | 20.63 3437 3753 41.67 | 1658 31.37 38.18 39.26
Average 1473 2336 2791 2876 | 14.67 2326 25.13 28.81 | 12.13 21.65 2593 2691
Reasoning Average \ 2529 2950 3273  33.06 \ 2545 29.88 31.02 32.86 \ 2428 2928 3120 32.19
Average \ 2540 2876 31.01 31.41 \ 2556 29.03 2995 31.55 \ 2491 28.68 30.22 31.08

Table 3: Pre-Training performance comparison across different 8 based on 4B dense models. The highest
scores at the final checkpoint across the different configurations are shown in bold.

| Hyperparameters | B=-025A=0A=0 | B=0A=0A=0 |  B=050;A=0; 1=
| # Pre-Trained Tokens | 125B 250B 375B 500B | 125B 250B 375B 500B | 125B 250B  375B  500B
MMLU (Acc.) 2498 3094 3438 3638 | 2576 2991 33.61 36.17 | 2445 30.14 3284 36.55
General MMLU-Pro (Acc.) 881 ILI1 1199 1347 | 925 1090 1171 1223 | 848 993 1096 12.63
Krowledge NaturalQuestions (EM) 687 911 1089 1258 | 665 975 1089 1222 | 632 892 1028 11.69
¢ TriviaQA (EM) 17.26 2514 3039 3339 | 17.91 2594 2780 33.83 | 17.19 2426 30.10 32.90
Average 1448 19.08 2191 2396 | 1489 19.13 21.00 23.61 | 1411 1831 21.05 2344
Hellaswag (Acc.) 50.36  57.81 60.80 63.01 | 5022 57.00 60.50 62.91 | 39.15 5749 6098 62.87
SIQA (Acc.) 4299 4427 4432 4544 | 4237 4335 4365 4473 | 4140 4171 4324 4478
PIQA (Acc.) 7198 7465 7552 7557 | 7242 7470 7535 76.28 | 7176 7443 7432 7546
Commonsense | WinoGrande (Acc.) 5272 5612 5722 59.04 | 53.67 5580 56.67 5872 | 53.67 5580 56.67 58.72
Reasoning OpenBookQA (Acc.) 33.00 36.00 3600 36.80 | 3340 3640 37.00 36.00 | 3400 36.00 37.80 39.40
CommonsenseQA (Acc.) 2113 2948 3743  49.63 | 2039 2826 4791 5291 | 1843 2932 37.10 48.98
Average 4536 4972 51.88 54.92 | 4541 4925 5351 5526 | 42.85 4888 5191 5503
Knowledge Average | 29.92 3440 36.90 39.44 | 30.15 3419 3726 39.44 | 2848 3359 3648 39.23
ARC-e (Acc.) 61.15 66.84 69.44 70.29 | 6027 6305 6797 67.55 | 5896 6498 6582 66.75
Logic ARC-c (Acc.) 31.83 3549 3677 37.80 | 3055 33.96 3677 3754 | 3191 3361 37.12 3712
Reasoning BBH (Acc.) 26.14 2632 3036 3165 | 26.54 2742 2953 2829 | 2502 2695 28.17 29.78
Average 39.71 42.88 4552 46,58 | 30.12 4148 4476 4446 | 38.63 4185 4370 4455
GSMSK (Pass @64) 49.66 6266 6723 7119 | 4843 6024 6875 71.26 | 5039 6171 69.88 71.98
MATH-500 (Pass @64) 39.07 4773 4862 51.14 | 38.19 48.15 4888 51.54 | 40.86 4672 4823 51.67
Mathematics | Minerva (Pass@64) 1548 2073 1937 20.07 | 1509 1922 19.68 20.63 | 1633 1845 17.64 19.85
OlympiadBench (Pass@64) | 2224 24.87 24.08 24.18 | 21.79 2553 23.70 24.84 | 2223 2381 2533 24.87
Average 3161 39.00 39.83 41.65 | 30.88 3829 4025 4207 | 3245 37.67 4027 42.09
HumanEval+ (Pass @64) 1711 2294 2779 3129 | 17.32 2322 3008 29.13 | 1673 2436 2772 28.52
Coding MBPP+ (Pass@64) 4407 59.66 6554 6563 | 40.66 56.64 6569 66.29 | 43.90 59.74 6507 65.65
Average 3059 41.30 46.67 4846 | 2899 39.93 47.89 4771 | 3032 4205 4640 47.09
Reasoning Average | 33.97 4106 4400 4556 | 33.00 3990 4430 4475 | 33.80 4052 4346 44.58

Average
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43.11 | 31.86 37.61 4148 42.62 | 31.67 3775 40.66 4244
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Table 4: Pre-Training performance comparison across different 3 based on 5B-A0.3B MoE models. The
highest scores at the final checkpoint across the different configurations are shown in bold.

‘ Hyperparameters ‘ B =—0.25; A=0;A=0 ‘ B=0; A=0;A=0 ‘ B = 0.50; A=0;A=0
| # Pre-Trained Tokens | 125B  250B 375B 500B | 125B 250B 375B 500B | 125B 250B  375B  500B
MMLU (Acc.) 2270 2721 2936 29.77 | 23.10 2512 29.17 3119 | 24.13 2699 2840 30.34
General MMLU-Pro (Acc.) 8.80 8.56 942  11.16 | 947 889 10.06 11.87 | 8.62 9.83 9.15 10.36
Knowledge NaturalQuestions (EM) 5.21 7.45 8.45 10.06 | 5.15 7.51 873 1042 | 576 7.48 8.78 10.17
8 TriviaQA (EM) 15.05 2223 2551 28.08 | 1493 22.03 2527 2825 | 13.75 2127 2596 28.00
Average 1294 1636 1819 19.77 | 13.16 1589 1831 2043 | 13.07 1639 18.07 19.72
Hellaswag (Acc.) 47.89 54.08 5670 57.78 | 48.54 54.63 56.88 5741 | 4858 5431 56.81 58.13
SIQA (Acc.) 40.53  41.25 4268 43.14 | 41.25 4227 4376 42.68 | 4028 4243 4201 43.19
PIQA (Acc.) 7149 7263 73.67 7524 | 7127 73.18 7443 7476 | 71.60 73.45 7459 7459
Commonsense | WinoGrande (Acc.) 52.88 5335 57.54 57.38 | 5043 5320 56.51 5620 | 52.01 5422 5509 56.43
Reasoning OpenBookQA (Acc.) 30.80 35.60 34.00 36.60 | 31.20 32.80 3440 33.60 | 33.80 34.00 35.80 35.60
CommonsenseQA (Acc.) 20.64 2727 3325 38,57 | 18.67 2293 2850 3538 | 19.41 2269 2588 31.37
Average 44.04 4736 49.64 5145 | 43.56 46.50 49.08 50.01 | 44.28 46.85 4836 49.89
Knowledge Average | 2849 3186 3391 35.61 | 2836 31.19 33.69 3522 | 28.67 31.62 3322 34.80
ARC-e (Acc.) 5779 6098 62.12 62.08 | 58.54 6292 6448 63.34 | 58.12 64.02 63.55 63.38
Logic ARC-c (Acc.) 27.47 3225 3294 3439 | 3080 34.81 3567 3515 | 28.67 3336 34.13 34.56
Reasoning BBH (Acc.) 2330 26.80 27.12 27.85 | 2397 2579 2771 27.03 | 2594 26.69 27.00 27.49
Average 36.19  40.01 40.73 4144 | 3777 41.17 42.62 41.84 | 37.58 4136 41.56 41.81
GSMSK (Pass@64) 5299 5943 6426 66.78 | 51.48 59.15 61.81 65.65 | 51.36 5621 6212 65.04
MATH-500 (Pass @64) 39.15 43.06 4846 52.00 | 37.57 43.69 4691 51.19 | 38.99 42.890 47.80 48.26
Mathematics Minerva (Pass @64) 1791 1898 1879 21.79 | 1547 1693 18.00 17.92 | 14.81 18.87 17.61 19.36
OlympiadBench (Pass@64) | 22.79  23.65 2429 2562 | 2350 24.14 2340 2442 | 2373 23.10 25.18 26.00
Average 3321 3628 3895 41.55 | 32.01 3598 37.53 39.80 | 32.22 3527 38.18 39.67
HumanEval+ (Pass @64) 18.11 2331 2620 2844 | 17.52 2279 2615 2932 | 17.14 2220 2753 2795
Coding MBPP+ (Pass@64) 37.25 55.06 5857 60.06 | 39.81 5429 5593 57.77 | 3875 5250 5645 59.97
Average 27.68 39.19 4239 44.25 | 28.67 38.54 41.04 4355 | 2795 3735 4199 43.96
Reasoning Average \ 3236 3849 40.69 4241 \ 32.81 3856 40.40 41.73 \ 3258 3799 40.58 41.81
Average \ 30.81 35.84 3798  39.69 \ 31.03  35.62 37.72  39.12 \ 31.02 3544 37.63 39.01

Table 5: Pre-Training performance comparison across different S based on 10B-A0.5B MoE models. The
highest scores at the final checkpoint across the different configurations are shown in bold.

| Hyperparameters | B=-025A=0A=0 | B=0A=0A=0 | B=050;A=0A=0
| # Pre-Trained Tokens | 125B 250B 375B 500B | 125B 250B 375B 500B | 125B 250B  375B  500B
MMLU (Acc.) 26.13 3274 3509 3660 | 2535 29.14 3350 3512 | 2605 3071 34.03 3548
General MMLU-Pro (Acc.) 944 1021 1138 1226 | 824 1001 11.64 1215 | 881 1132 1097 11.90
Knowledee NaturalQuestions (EM) 679 1036 1247 1399 | 706 1047 1141 1196 | 7.84 1058 1136 13.77
¢ TriviaQA (EM) 2069 2978 3525 3795 | 1994 2986 33.80 3731 | 2073 29.64 3531 39.13
Average 1576 2077 2355 2520 | 1515 1987 2261 2414 | 1586 2056 2292 25.07
Hellaswag (Acc.) 5286 5947 6165 6326 | 53.00 5927 6200 63.71 | 53.09 59.17 6196 63.48
SIQA (Acc.) 4161 4345 4514 4560 | 4202 4273 4345 4509 | 4191 4284 4463 4376
PIQA (Acc.) 7345 7432 7476 7568 | 7274 7459 7552 7671 | 7410 7492 7655 76.88
Commonsense | WinoGrande (Acc.) 5406 5659 5627 58.64 | 52.88 56.12 59.04 5888 | 53.83 56.04 58.80 59.04
Reasoning OpenBookQA (Acc.) 3440 3500 3540 3740 | 3280 3560 3560 3820 | 33.20 3760 3720 39.40
CommonsenseQA (Acc.) 2007 3464 4480 5160 | 2252 3374 3554 4390 | 21.54 3202 3751 43.16
Average 46.08 5058 53.00 5536 | 4599 5034 51.86 5442 | 4628 5043 5278 54.29
Knowledge Average | 3092 3568 3828 40.28 | 3057 3511 3723 3928 | 31.07 3550 37.85 39.68
ARC-e (Acc.) 6094 6591 66.84 70.29 | 63.01 67.09 67.63 67.00 | 6237 6637 68.77 69.32
Logic ARC-c (Acc.) 3191 3720 3567 3746 | 3268 3524 3652 3729 | 3251 3609 3720 38.82
Reasoning BBH (Acc.) 2734 2824 2935 2930 | 2521 2537 2815 29.44 | 2451 2737 2774 2829
Average 4006 4378 4395 4568 | 40.30 4257 44.10 4458 | 39.80 4328 4457 4548
GSMSK (Pass@64) 5759 6686 66.89 73.64 | 5940 7002 7525 76.63 | 56.16 6638 7231 74.60
MATH-500 (Pass@64) 4295 5232 5427 5782 | 4129 5096 5370 5676 | 41.69 4835 5079 56.46
Mathematics Minerva (Pass@64) 16.68 18.55 2030 21.75 | 17.23 1824 2193 2241 | 17.37 1938 1995 21.71
OlympiadBench (Pass@64) | 22.26 2479 2454 2458 | 2053 2227 2277 2431 | 2204 2570 2486 2652
Average 3487 4063 4150 4445 | 3461 4037 4341 4503 | 3432 3995 4198 4482
HumanEval+ (Pass@64) 2072 2990 3453 3419 | 19.12 2836 3082 34.66 | 19.07 2691 3281 3338
Coding MBPP+ (Pass @64) 5205 6595 7015 7334 | 51.01 63.64 6674 70.16 | 5140 6294 68.06 7247
Average 3639 4793 5234 5377 | 3507 4600 4878 5241 | 3524 4493 5044 5293
Reasoning Average | 37.11 4411 4593 4797 | 36.66 4298 4543 4734 | 3645 4272 4566 47.74

Average
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44.89 ‘ 3422 3983 4215 44.11 ‘ 3430 39.83 4254 4452
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Table 6: Pre-Training performance comparison across different A and A based on 1B dense models. The
highest scores at the final checkpoint across the different configurations are shown in bold.

‘Hyperparameters ‘ ﬁ:O;;\:O;}\z—O.l ‘ ﬁ:O;;\:O;;\:O ‘ ‘B=O}§L=0.1;}L=O
| #Pre-Trained Tokens | 125B 250B 375B  500B | 125B 250B 375B  500B | 125B 250B 375B  500B
MMLU (Acc.) 2161 2371 2404 2606 | 20.85 2339 24.04 26.62 | 23.59 2292 24.63 25.89
General MMLU-Pro (Acc.) 834 932 842 867 | 763 823 798 902 | 904 869 850 9.3
Ki‘:"f‘e dee NaturalQuestions (EM) 266 471 490 521 | 274 407 452 579 | 305 479 474 515
wieds TriviaQA (EM) 861 1270 1495 1559 | 8.65 1263 1353 1625 | 876 11.18 1408 1550
Average 1031 1261 13.08 1388 | 9.97 1208 12.52 1442 | 1111 1190 1299 13.94
Hellaswag (Acc.) 38.61  44.06 4640 48.17 | 38.96 4442 4626 48.33 | 38.87 4372 4667 4826
SIQA (Acc.) 39.51 38.84 40.63 4048 | 40.02 4033 4150 4232 | 3879 40.53 4130 4237
PIQA (Acc.) 6670 69.64 7084 7095 | 67.90 69.75 71.00 7111 | 6730 6948 71.60 7111
Commonsense | WinoGrande (Acc.) 5020 5036 51.54 5233 | 5249 5217 52.80 53.83 | 4893 5138 5478 52.64
Reasoning OpenBookQA (Acc.) 2940 31.60 3220 3240 | 29.80 3220 33.60 32.80 | 30.80 3020 3220 31.40
CommonsenseQA (Acc.) 1949 19.08 2039 18.92 | 19.57 2179 19.82 20.07 | 20.64 19.00 18.84 23.34
Average 40.65 4226 43.67 4388 | 4146 4344 4416 4474 | 40.89 4239 4423  44.85
Knowledge Average | 2548 2744 2837 2888 | 2571 2776 2834 29.58 | 2600 27.14 2861 29.40
ARC-e (Acc.) 5236 5728 59.09 5846 | 51.64 5568 5670 58.80 | 5021 5501 5838  60.35
Logic ARC-c (Acc.) 2765 29.86 28.84 2978 | 27.30 2944 2952 29.01 | 2602 28.16 3046  30.20
Reasoning BBH (Acc.) 2448 2433 2519 2342 | 2213 2256 25.68 27.34 | 2332 2442 2405 25.59
Average 3483 3716 3771 3722 | 33.69 3589 3730 3838 | 33.18 3586 37.63 38.71
GSMSK (Pass@64) 3832 44.09 4721 4738 | 41.09 4878 4877 4876 | 41.85 4330 4525 50.04
MATH-500 (Pass@64) 3417 3642 3842 39.69 | 3341 3543 37.10 3849 | 3352 3801 37.35 3729
Mathematics | Minerva (Pass@64) 1435 1668 1620 17.07 | 1644 1671 1480 1643 | 1511 1689 1721 16.87
OlympiadBench (Pass@64) | 2044 2229 2195 2376 | 21.06 21.01 21.85 21.83 | 21.12 2124 2077 21.62
Average 26.82 29.87 3095 31.98 | 28.00 3048 30.63 31.38 | 27.90 29.86 30.15 31.46
HumanEval+ (Pass@64) 813  13.04 1512 1469 | 871 1215 1272 1595 | 8.84 1234 1691 16.39
Coding MBPP+ (Pass@64) 19.08 30.08 38.37 43.02 | 20.63 3437 3753 41.67 | 1925 32.66 4090 41.62
Average 13.61 2156 2675 28.86 | 1467 2326 2513 2881 | 1405 2250 2891 29.01
Reasoning Average | 2509 2953 31.80 32.68 | 2545 29.88 31.02 3286 | 2504 29.41 3223 33.06
Average | 2524 2869 3043 3116 | 25.56 29.03 2995 3155 | 2543 2850 30.78 31.59

Table 7: Pre-Training performance comparison across different A and A based on 4B dense models. The
highest scores at the final checkpoint across the different configurations are shown in bold.

‘ Hyperparameters ‘ /.’3:0;7\:0;}\:70.1 ‘ ﬁ:O;X:O;;\:O ‘ ‘3:0;120.1;}\:0
| # Pre-Trained Tokens | 125B 250B 375B 500B | 125B 250B 375B 500B | 125B 250B  375B  500B
MMLU (Acc.) 2379 3057 3371 3480 | 2576 2991 33.61 3617 | 23.02 31.66 3380 3543
General MMLU-Pro (Acc.) 9.57 1037 1150 11.83 | 925 1090 1171 12.23 | 844 1137 1187 1220
Krowledge NaturalQuestions (EM) 615 992 1141 1177 | 526 934 1086 1235 | 665 975 1089 1222
& TriviaQA (EM) 17.19 2653 3113 3359 | 17.91 2594 2780 33.83 | 1693 2599 3057 33.29
Average 1418 1935 2194 2300 | 1489 19.13 21.00 23.61 | 1341 1959 21.78 23.32
Hellaswag (Acc.) 50.56  57.22  60.25 6227 | 5022 57.00 60.50 62.91 | 5021 5809 6130 62.09
SIQA (Acc.) 4217 4248 4411 4698 | 4237 4335 43.65 4473 | 4140 4452 4539 4529
PIQA (Acc.) 7127 7437 7416 7519 | 7242 7470 7535 76.28 | 71.16 7388 73.56 76.12
Commonsense | WinoGrande (Acc.) 5462 5643 59.04 5888 | 53.67 5580 56.67 58.72 | 53.91 57.54 5825 59.91
Reasoning OpenBookQA (Acc.) 3440 38.60 3800 37.80 | 3340 3640 37.00 36.00 | 32.80 3580 3640 3740
CommonsenseQA (Acc.) 19.41 3006 39.80 4676 | 20.39 2826 4791 5291 | 20.56 30.06 41.52 46.93
Average 4541 4986 5256 5465 | 4541 4925 53.51 5526 | 4501 4998 5274 54.62
Knowledge Average | 2979 3460 3725 3882 | 30.15 3419 3726 3944 | 2921 3479 3726 3897
ARC-e (Acc.) 59.51 6532 6831 6814 | 6027 6305 6797 67.55 | 60.19 67.05 6848 67.63
Logic ARC-c (Acc.) 3157 3515 3695 3720 | 3055 33.96 3677 37.54 | 31.66 3575 3823 3720
Reasoning BBH (Acc.) 27.38 2808 29.15 29.15 | 26.54 2742 2953 2829 | 2622 27.15 3032 28.80
Average 39.49  42.85 44.80 44.83 | 39.12 4148 4476 4446 | 3936 4332 4568 4454
GSMBSK (Pass @64) 4640 59.61 6293 7092 | 4843 60.24 68.75 7126 | 4809 58.17 61.84 70.94
MATH-500 (Pass @64) 38.86 47.09 4823 5247 | 38.19 4815 4888 51.54 | 38.16 43.83 46.77 5045
Mathematics | Minerva (Pass@64) 16.60 17.99 17.90 21.27 | 1509 1922 19.68 20.63 | 16.67 18.06 1947 20.54
OlympiadBench (Pass@64) | 21.80 2330 2440 24.19 | 21.79 2553 23.70 24.84 | 2292 2574 2516 25.62
Average 3092 37.00 3837 4221 | 30.88 3829 4025 4207 | 3146 3645 3831 41.89
HumanEval+ (Pass @64) 1671 2377 2727 2941 | 17.32 2322 3008 29.13 | 1542 2041 2956 31.08
Coding MBPP+ (Pass @64) 4224 5678 63.88 66.01 | 40.66 56.64 65.69 66.29 | 38.19 5732 6474 65.65
Average 2948 4028 4558 4771 | 2899 39.93 47.89 4771 | 2681 3887 47.15 4837
Reasoning Average | 3329 4004 4291 4492 | 33.00 39.90 4430 4475 | 32.54 39.54 4371 44.93
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42.48 ‘ 31.86 37.61 4148 42.62 ‘ 2921 37.64 41.13 4255
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Table 8: Pre-Training performance comparison across different A and A based on 5B-A0.3B MoE models.
The highest scores at the final checkpoint across the different configurations are shown in bold.

‘Hyperparameters ‘ ﬁ:O;;\:O;}\z—O.l ‘ ﬁ:O;;\:O;;\:O ‘ ‘B=O}§L=0.1;}L=O
| #Pre-Trained Tokens | 125B 250B 375B  500B | 125B 250B 375B  S00B | 125B 250B 375B  500B
MMLU (Acc.) 2224 2611 2641 2999 | 23.10 25.12 29.17 3119 | 2220 2645 29.44 3137
General MMLU-Pro (Acc.) 755 874 882 1036 | 947 889 1006 1187 | 818 963 1011 11.02
Knowledse NaturalQuestions (EM) 560 734 737 884 | 515 751 873 1042 | 521 795 831 98l
wieds TriviaQA (EM) 1454 2120 2570 2726 | 1493 2203 2527 2825 | 1509 21.84 2585 2891
Average 1248 1585 17.08 1911 | 13.16 1589 1831 2043 | 1267 1647 1843 2028
Hellaswag (Acc.) 48.44 53.64 5672 57.58 | 4854 5463 5688 5741 | 4851 5389 5642 57.33
SIQA (Acc.) 4048 4355 43.65 42.84 | 4125 4227 4376 42.68 | 3884 4150 4150 41.81
PIQA (Acc.) 69.48 7296 7339 7437 | 7127 7318 7443 7476 | 7155 7443 7443 7492
Commonsense | WinoGrande (Acc.) 5280 54.85 5501 5556 | 5043 5320 5651 5620 | 52.88 5422 5691 55.96
Reasoning OpenBookQA (Acc.) 3200 31.80 3340 3420 | 31.20 3280 3440 33.60 | 3220 3440 3440 3640
CommonsenseQA (Acc.) 1974 23.67 2015 3030 | 18.67 2293 2850 3538 | 2007 2465 2776 31.86
Average 4382 4675 4705 49.14 | 4356 4650 49.08 50.01 | 4401 47.18 4857 4971
Knowledge Average | 2815 3130 3206 3413 | 2836 3119 33.69 3522 | 2834 31.82 3350 35.00
ARC-¢ (Acc.) 57.15 6149 6343 6301 | 5854 6292 6448 6334 | 5863 6225 6242 6208
Logic ARC-c (Acc.) 3020 3328 3473 33.62 | 30.80 34.81 3567 3515 | 31.06 3473 3404 3498
Reasoning BBH (Acc.) 2456 2460 2829 2645 | 2397 2579 2771 27.03 | 2233 2628 2809 27.74
Average 3730 3979 4215 41.03 | 3777 4117 4262 4184 | 3734 4109 4152 41.60
GSMSK (Pass@64) 5099 59.44 62.10 6461 | 5148 59.15 61.81 65.65 | 4816 5815 60.69 59.90
MATH-500 (Pass @64) 3991 46.65 4892 5065 | 37.57 43.69 4691 5119 | 3871 4231 4649 48.60
Mathematics | Minerva (Pass@64) 1636 1598 1830 1883 | 1547 1693 1800 17.92 | 1731 1801 1778 18.02
OlympiadBench (Pass@64) | 22.16  23.01 2523 25.54 | 2350 24.14 2340 2442 | 2262 2402 2457 24.19
Average 3236 3627 3864 3991 | 3201 3598 3753 39.80 | 31.70 3562 37.38 37.68
HumanEval+ (Pass@64) 1401 2249 2753 27.00 | 1752 2279 2615 2932 | 1527 2136 24.62 27.88
Coding MBPP+ (Pass@64) 3832 5288 5744 60.50 | 390.81 5429 5593 5777 | 40.39 49.00 56.04 60.17
Average 26.17 37.69 4249 4375 | 2867 3854 41.04 4355 | 27.83 3518 4033 44.03
Reasoning Average | 3194 3792 41.09 4156 | 3281 3856 4040 4173 | 3229 3730 3974 4110
Average | 3043 3527 3748 3859 | 31.03 3562 3772 3912 | 3071 35.11 3725 38.66
Table 9: Pre-Training performance comparison across different A and A based on 10B-A0.5B MoE models.
The highest scores at the final checkpoint across the different configurations are shown in bold.
‘ Hyperparameters ‘ B=0; A=0;A=-01 ‘ B=0; A=0;A=0 ‘ B=0; A=01 A=
| # Pre-Trained Tokens | 125B 250B 375B 500B | 125B 250B 375B 500B | 125B 250B  375B  500B
MMLU (Acc.) 2599 31.87 3524 36.13 | 2535 20.14 3350 35.12 | 2538 3248 3447 3675
General MMLU-Pro (Acc.) 940 1110 1217 1319 | 824 1001 1164 1215 | 896 11.19 1264 1234
Krowledee NaturalQuestions (EM) 751 1122 1194 1260 | 706 1047 1141 1196 | 7.06 1044 1125 13.52
g TriviaQA (EM) 2055 2922 3357 3730 | 1994 29.86 33.89 3731 | 21.12 2948 3393 37.61
Average 1586 2085 2323 2481 | 1515 1987 2261 2414 | 1563 2090 23.07 25.06
Hellaswag (Acc.) 5270 5923 6330 63.68 | 53.00 59.27 6200 63.71 | 53.06 59.75 63.67 6338
SIQA (Acc.) 40.63  43.60 4437 4417 | 4202 4273 4345 4500 | 41.04 4417 4534 4550
PIQA (Acc) 7323 7492 7590 7622 | 7274 7459 7552 7671 | 7242 7470 7552 7650
Commonsense | WinoGrande (Acc.) 5272 5754 5856 59.98 | 52.88 56.12 59.04 58.88 | 53.83 57.14 59.12 59.98
Reasoning OpenBookQA (Acc.) 3420 3560 37.00 36.80 | 32.80 3560 3560 3820 | 33.60 3540 3620 35.60
CommonsenseQA (Acc.) 2138 37.92 44.64 48.89 | 2252 3374 3554 4390 | 1925 3481 4103 4529
Average 4581 5147 5396 54.96 | 4599 5034 51.86 5442 | 4553 5100 5348 5438
Knowledge Average | 30.84 36.16 3860 39.88 | 3057 3511 3723 3928 | 30.58 3595 3828 39.72
ARC-¢ (Acc.) 60.69 6625 69.61 6843 | 6301 67.09 67.63 67.00 | 64.06 6599 70.03 67.59
Logic ARC-c (Acc.) 3387 37.63 3873 3771 | 3268 3524 3652 3729 | 3413 3771 37.88 39.42
Reasoning BBH (Acc.) 2563 2634 29.06 29.10 | 2521 2537 2815 29.44 | 2520 2946 29.72 29.70
Average 4006 4341 4580 4508 | 4030 4257 44.10 4458 | 4113 4439 4588 4557
GSMSK (Pass @64) 55.13  69.42 7180 177.63 | 59.40 70.02 7525 76.63 | 5589 6529 7144 75.11
MATH-500 (Pass @64) 4356  49.61 5432 5639 | 4129 5096 5370 56.76 | 42.58 49.50 5246 5475
Mathematics Minerva (Pass@64) 17.23 1923 2027 22.60 | 17.23 1824 2193 2241 16.07 19.55 2159 20.38
OlympiadBench (Pass@64) | 22.90 22.84 2430 26.67 | 20.53 2227 2277 2431 | 2323 2428 2525 26.15
Average 3471 4028 4267 45.82 | 3461 4037 4341 4503 | 3444 3966 4269 44.10
HumanEval+ (Pass@64) 2182 29.67 3292 3518 | 19.12 2836 30.82 34.66 | 19.54 2532 3097 3296
Coding MBPP+ (Pass@64) 4831 6341 6898 7101 | 51.01 63.64 6674 70.16 | 5024 60.62 6822 71.02
Average 3507 4654 5095 53.10 | 3507 46.00 4878 5241 | 3489 4297 49.60 51.99
Reasoning Average | 36.61 4341 4647 48.00 | 36.66 4298 4543 4734 | 3682 4234 4605 47.22
Average | 3430 4051 4332 4475 | 3422 3983 42.15 4411 | 3433 3978 4294 4422
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Table 10: Mid-Training performance comparison across different 5 based on 4B dense models. The highest
scores at the final checkpoint across the different configurations are shown in bold.

‘ Hyperparameters ‘ B =—0.25; A=0;A=0 ‘ B=0; A=0;A=0 ‘ B = 0.50; A=0;A=0
| #Mid-Trained Tokens | 5B 50B  75B  100B | 25B  50B  75B  100B | 25B  50B  75B  100B
MMLU (Acc.) 37.99 3951 39.69 39.92 | 3727 3934 3923 4047 | 3653 3845 39.00 39.48
General MMLU-Pro (Acc.) 1651 1844 19.69 1970 | 1550 1727 1777 18.68 | 1497 1644 17.99 18.53
Ki‘éerfe doc NaturalQuestions (EM) 1169 1175 1216 1233 | 1216 1191 1233 1255 | 1175 1114 1208 11.88
wiedg TriviaQA (EM) 3260 3275 3405 3450 | 3190 3254 3350 3417 | 32.55 3278 34.00 34.67
Average 2470 25.61 2640 26.61 | 2421 2527 2571 2647 | 2395 2470 2579 26.14
Hellaswag (Acc.) 6159 6170 6195 6241 | 6125 6172 6214 62.09 | 61.68 6201 62.54 62.51
SIQA (Acc.) 4478 4371 4442 4478 | 4544 4529 4575 4585 | 4432 4478 4483  44.88
PIQA (Acc.) 7524 7601 7519 7584 | 7524 7524 7524 7573 | 7454 7492 7481 7492
Commonsense | WinoGrande (Acc.) 60.60 59.67 6022 60.62 | 5896 59.98 6046 60.85 | 58.88 59.35 59.51 59.67
Reasoning OpenBookQA (Acc.) 3560 3820 3720 3740 | 3660 37.40 3800 3740 | 39.20 4040 40.60  40.00
CommonsenseQA (Acc.) 5200 5242 5438 5577 | 5413 5299 5397 5487 | 49.14 50.04 5258 53.07
Average 5500 5529 5556 5614 | 5527 5544 5593 56.13 | 54.63 5525 5581 55.84
Knowledge Average | 39.85 4045 4098 4137 | 3974 4035 4082 4130 | 3929 3998 4080 40.99
ARC-e (Acc.) 66.84 6894 7045 69.82 | 68.81 6894 69.82 69.99 | 6684 69.19 6991 7117
Logic ARC-c (Acc.) 3933 41.04 4078 41.89 | 4061 41.13 4164 41.89 | 38.14 4138 4087 41.72
Reasoning BBH (Acc.) 3390 3858 39.66 39.83 | 3347 3695 3645 3728 | 31.90 3488 36.11 3592
Average 46.69 4952 5030 50.51 | 47.63 49.01 4930 49.72 | 45.63 4848 4896  49.60
GSMSK (Pass@64) 84.66 88.94 91.17 9125 | 8573 89.60 9223 9270 | 83.30 88.82 9175 92.08
MATH-500 (Pass @64) 63.69 6670 7073 7041 | 6242 66.14 69.48 7TL35 | 6242 6549 68.17 68.97
Mathematics | Minerva (Pass@64) 21.88 23.67 2682 2599 | 2470 2438 2822 2672 | 22.86 2390 2395 24.99
OlympiadBench (Pass@64) | 28.96  30.15 3215 3221 | 2844 33.15 3296 32.65 | 2921 2980 31.51 32.85
Average 4980 5237 5522 5497 | 5032 5332 5572 5586 | 49.45 5200 5385 5472
HumanEval+ (Pass @64) 5037 5774 6485 6433 | 5164 60.52 6495 6589 | 48.07 60.60 6331 6630
Coding MBPP+ (Pass @64) 7991 8227 8548 8679 | 77.50 8232 8481 8528 | 77.83 8251 8377 834l
Average 6674 7001 7517 7556 | 6457 7142 7488 7559 | 6295 7156 73.54 74.86
Reasoning Average ‘ 5421 5730 6023 60.35 ‘ 5417 5791 5997 60.39 ‘ 52.67 5735 58.78 59.73
Average | 48.46 50.56 5253 5276 | 48.40 50.89 5231 5275 | 4732 5040 5159 5223

Table 11: Mid-Training performance comparison across different 5 based on 10B-A0.5B MoE models. The
highest scores at the final checkpoint across the different configurations are shown in bold.

‘ Hyperparameters ‘ B =—0.25; A=0;A=0 ‘ B=0; A=0; A= ‘ B = 0.50; A=0; A=
| #Mid-Trained Tokens | 25B  50B 75B  100B | 25B  50B  75B  100B | 25B  50B  75B  100B
MMLU (Acc.) 36.39 3723 3775 3811 | 36.15 37.27 37.54 37.82 | 35.04 3649 3645 37.10
General MMLU-Pro (Acc.) 12.31 12.88  13.69 1391 1298 1391 14.41 14.71 12.03 12.82 1332 13.46
Knowledge NaturalQuestions (EM) 1280 13.77 14.18 1435 | 11.30 1211 1244 1285 | 11.30 12.11 1244 12.85
g TriviaQA (EM) 36.61 37.37 3829 3876 | 35.84 37.15 37.81 38.38 | 37.57 38.84 39.62 40.21
Average 2453 2531 2598 2628 | 24.07 25.11 2555 2594 | 2440 2541 2587 26.18
Hellaswag (Acc.) 62.25 6239 6294 6325 | 6247 6282 6350 63.74 | 6251 62.67 6329 6343
SIQA (Acc.) 4386 44.63 44.68 4519 | 4555 43.04 4370 4422 | 4463 4401 4473 44.01
PIQA (Acc.) 7546 7492 7557 7595 | 76.06 75.63 7573 7655 | 7590 76.06 7650 76.82
Commonsense | WinoGrande (Acc.) 58.80 5998 60.54 60.46 | 58.96 58.88 59.59 59.83 | 58.64 59.51 60.77  60.30
Reasoning OpenBookQA (Acc.) 3740 36.80 37.60 38.00 | 36.60 37.20 37.00 37.20 | 40.00 40.40 40.20  40.60
CommonsenseQA (Acc.) 50.53 5045 50.61 50.61 | 43.90 46.52 49.06 49.06 | 40.46 42775 4373 4390
Average 5472 54.86 5532 55.58 | 5392 54.02 5476 55.10 | 53.69 5423 5487 54.84
Knowledge Average | 39.62 40.09 4065 4093 | 39.00 3956 40.16 40.52 | 39.04 39.82 4037 40.51
ARC-e (Acc.) 68.35 6890 69.40 70.12 | 6835 6890 69.40 70.12 | 68.52 70.03 69.87 70.24
Logic ARC-c (Acc.) 38.65 40.10 41.30 40.53 | 39.59 4044 4249 42.83 | 3993 40.87 41.64 4198
Reasoning BBH (Acc.) 30.70 31.64 31.84 3205 | 30.64 33.68 3359 34.14 | 30.69 3242 3325 3344
Average 4590 46.88 4751 4757 | 4640 4830 4891 49.27 | 4638 4777 4825 48.55
GSMBK (Pass@64) 85.06 87.67 90.35 90.53 | 87.16 90.68 90.83 92.03 | 84.62 8839 89.84 90.30
MATH-500 (Pass @64) 6520 68.85 70.19 7173 | 6439 6835 70.77 7097 | 6427 6859 67.46 70.00
Mathematics Minerva (Pass@64) 2533  25.02 2626 2653 | 2451 2383 2477 27.03 | 23.51 2676 27.11 2590
OlympiadBench (Pass@64) | 29.73  30.76 32.84 3321 | 2891 30.05 33.11 32.63 | 28.57 29.86 32.82 33.39
Average 51.33  53.08 5491 5550 | 51.24 5323 54.87 55.67 | 5024 5340 5431 54.90
HumanEval+ (Pass @64) 4879 5588 56.24 58.05 | 48.00 53.35 5698 55.18 | 49.33 53.14 55.06 56.21
Coding MBPP+ (Pass@64) 7731 80.74 8455 8341 | 7628 80.29 81.82 81.38 | 76.03 78.12 80.15 80.80
Average 63.05 6831 7040 70.73 | 62.14 66.82 69.40 68.28 | 62.68 6563 67.61 68.51
Reasoning Average | 5343 5609 5761 5793 | 5326 56.12 57.73 5774 | 53.10 55.60 5672 57.32
Average | 47.90 49.69 5082 5113 | 4756 49.50 5070 50.85 | 47.48 49.29 50.18 50.60
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Table 12: Mid-Training performance comparison across different A and A based on 4B dense models. The
highest scores at the final checkpoint across the different configurations are shown in bold.

‘Hyperparameters ‘ ﬁ:O;;\:O;}\z—O.l ‘ ﬁ:O;;\:O;;\:O ‘ ‘B=O}§L=0.1;}L=O
| #Mid-Trained Tokens | 25B  50B 75B  100B | 25B 50B  75B  100B | 25B  50B  75B  100B
MMLU (Acc.) 3733 3873 3883 39.13 | 3727 3934 3923 4047 | 37.15 38.06 38.76 39.43
General MMLU-Pro (Acc.) 1417 1661 17.57 1823 | 1550 1727 1777 18.68 | 1417 1558 1641 17.50
Ki‘:"f‘e dee NaturalQuestions (EM) 1125 1199 1230 1266 | 1216 1191 1233 12,55 | 11.14 1249 1258 1274
wieds TriviaQA (EM) 3329 33.89 3480 3532 | 3190 32.54 3350 34.17 | 3273 33.50 34.17 3459
Average 2401 2531 2588 2634 | 2421 2527 2571 2647 | 23.80 2491 2548 26.07
Hellaswag (Acc.) 61.11 6125 6176 6229 | 6125 61.72 62.14 62.09 | 61.59 6146 6198 62.16
SIQA (Acc.) 4500 4437 4406 4524 | 4544 4529 4575 4585 | 4621 4621 4637  46.62
PIQA (Acc.) 7546 7601 7622 7612 | 7524 7524 7524 7573 | 7459 7476 7541 71541
Commonsense | WinoGrande (Acc.) 6022 6022 6148 6046 | 5896 59.98 6046 60.85 | 60.85 60.14 5951 59.98
Reasoning OpenBookQA (Acc.) 39.80 3820 3820 38.00 | 36.60 3740 3800 3740 | 39.80 38.60 39.60 40.20
CommonsenseQA (Acc.) 4693 51.84 5373 5381 | 5413 5299 5397 54.87 | 4586 47.67 49.80 50.20
Average 5477 5532 5591 5599 | 5527 5544 5593 5613 | 54.82 5481 5545 55.76
Knowledge Average | 30.30 4031 4089 41.16 | 39.74 4035 40.82 4130 | 3931 39.86 4046 4091
ARC-e (Acc.) 68.52 6856 7075 7134 | 68.81 6894 69.82 69.99 | 7033 7029 71.04 71.25
Logic ARC-c (Acc.) 39.93 4096 41.81 42.66 | 40.61 41.13 4164 41.89 | 41.30 42.15 4224 43.34
Reasoning BBH (Acc.) 3278 37.15 3849 3930 | 3347 3695 3645 3728 | 33.62 3540 3658 37.74
Average 4708 48.89 5035 5110 | 47.63 49.01 4930 4972 | 4842 4928 4995 50.78
GSMSK (Pass@64) 8438 89.90 9043 91.69 | 8573 89.60 9223 9270 | 8599 87.51 90.68 90.11
MATH-500 (Pass@64) 6440 7024 7250 7278 | 6242 66.14 6948 7135 | 6331 67.35 7036 7031
Mathematics | Minerva (Pass@64) 2164 2381 2565 2686 | 2470 2438 2822 2672 | 2328 2260 2553 2543
OlympiadBench (Pass@64) | 30.09 3229 3352 3413 | 2844 33.15 3296 3265 | 2632 2890 30.55 34.11
Average 50.13 5406 5553 5637 | 5032 5332 5572 55.86 | 4973 5159 5428  54.99
HumanEval+ (Pass@64) 5062 5851 6458 6523 | 51.64 6052 6495 6589 | 51.68 58.17 6394 6531
Coding MBPP+ (Pass@64) 7824 8329 8536 8522 | 77.50 8232 84.81 8528 | 7931 8159 85.17 85.23
Average 6443 7090 7497 7523 | 64.57 7142 7488 7559 | 65.50 69.88 7456 7527
Reasoning Average | 53.88 5795 6028 60.90 | 5417 5791 5997 6039 | 5455 5692 59.60 60.35
Average | 48.08 50.89 5253 53.00 | 4840 50.89 5231 5275 | 4845 5009 5194 52.57

Table 13: Mid-Training performance comparison across different A and A based on 10B-A0.5B MoE models.
The highest scores at the final checkpoint across the different configurations are shown in bold.

‘ Hyperparameters ‘ B=0; A=0;A=-01 ‘ B=0; A=0; A= ‘ B=0; A=01 A=
| #Mid-Trained Tokens | 25B  50B 75B  100B | 25B  50B  75B  100B | 25B  50B  75B  100B
MMLU (Acc.) 36.86 3822 3898 39.07 | 36.15 3727 3754 37.82 | 36.90 37.96 3829 39.30
General MMLU-Pro (Acc.) 14.10 1520 1593 16.39 1298 1391 14.41 14.71 13.02  15.05 14.67 1472
Knowledge NaturalQuestions (EM) 1235 13.05 13.63 13.60 | 11.30 12.11 1244 1285 | 1252 12.63 1330 13.49
g TriviaQA (EM) 3551 37.14 3749 3825 | 3584 37.15 37.81 38.38 | 36.25 3698 38.01 38.44
Average 2471 2590 2651 2683 | 24.07 25.11 2555 2594 | 24.67 25.66 26.07 2649
Hellaswag (Acc.) 62.67 6296 63.12 6350 | 6247 6282 6350 63.74 | 62.93 63.07 6342 63.73
SIQA (Acc.) 4386 4396 4371 4371 | 4555 43.04 4370 4422 | 4534 4550 4591 4545
PIQA (Acc.) 76.01 7541 7595 7622 | 76.06 75.63 7573 7655 | 76.01 7573 7617 76.12
Commonsense | WinoGrande (Acc.) 60.06 61.09 60.77 58.88 | 60.06 61.09 60.77 58.88 | 58.56 59.59 60.46 61.01
Reasoning OpenBookQA (Acc.) 37.60 35.80 36.00 3540 | 36.60 37.20 37.00 37.20 | 37.20 35.80 37.00 37.80
CommonsenseQA (Acc.) 4562 48.89 4586 4848 | 4390 46.52 49.06 49.06 | 4545 47.83 4791 49.63
Average 5430 54.69 5424 5437 | 5392 54.02 5476 55.10 | 5425 5459 5515 55.62
Knowledge Average \ 39.50 40.29  40.37  40.60 \ 39.00 39.56 40.16 40.52 \ 39.46 40.12  40.61 41.06
ARC-e (Acc.) 69.78 69.78 70.58 71.09 | 68.98 70.79 70.66 70.83 | 68.48 69.95 7056 71.13
Logic ARC-c (Acc.) 40.10 41.21 41.81 41.30 | 39.59 4044 4249 42.83 | 41.64 4241 4181 42.06
Reasoning BBH (Acc.) 31.18 3321 3371 3405 | 30.64 33.68 3359 34.14 | 30.70 33.19 32.64 3273
Average 47.02 48.07 4870 48.81 | 46.40 4830 4891 49.27 | 4694 4852 4834 48.64
GSMBK (Pass@64) 87.23 9034 91.10 9145 | 87.16 90.68 90.83 92.03 | 84.20 8747 89.839 90.41
MATH-500 (Pass @64) 6474  69.10 71.01 70.77 | 6439 6835 70.77 7097 | 63.07 6599 69.52 69.96
Mathematics Minerva (Pass@64) 2450 2523 2550 26.67 | 2451 2383 2477 27.03 | 23.05 2698 27.02 2741
OlympiadBench (Pass@64) | 28.84 3041 31.34 3120 | 2891 30.05 33.11 32.63 | 31.11 32.09 3257 32.83
Average 51.33 5377 5474 55.02 | 51.24 5323 5487 55.67 | 5036 53.13 5475 55.15
HumanEval+ (Pass @64) 47.08 50.89 5211 55.14 | 48.00 5335 5698 55.18 | 4736 51.56 55.66 55.62
Coding MBPP+ (Pass@64) 78.67 79.80 81.25 84.00 | 76.28 80.29 81.82 81.38 | 7624 80.35 8242 83.16
Average 62.88 6535 66.68 69.57 | 62.14 6682 69.40 68.28 | 61.80 6596 69.04 69.39
Reasoning Average | 53.74 5573 5671 57.80 | 5326 56.12 57.73 5774 | 53.03 5587 5738 5773
Average | 48.05 4955 5017 5092 | 47.56 49.50 50.70 50.85 | 47.60 49.57 50.67 51.06
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Table 14: RL performance of the 4B Dense Model with 3 = 0; A = 0; A = 0.

| #RLSteps | 100 200 300 400 500 600 700 800 900 1000

Avg@128 0.89 0.81 1.14 1.04 112 1.54 1.33 1.69 1.64 1.62

AIME24 Cons@128 0.00 0.00 0.00 0.00 333 333 333 6.67 333 333
Pass@64 15.34 13.77 2127 14.80 11.68 22.86 19.81 19.68 14.78 18.32

Avg@128 0.57 0.86 0.86 1.46 1.59 2.29 1.30 2.06 221 224

AIME25 Cons@128 0.00 0.00 0.00 333 0.00 6.67 333 333 3.33 3.33
Pass@64 14.90 11.67 10.84 10.00 16.16 10.84 12.93 14.35 10.84 14.59

Avg@128 18.46 23.07 24.94 27.87 28.96 28.73 27.17 28.18 29.16 29.51

AMC23 Cons@128 37.50 35.00 40.00 47.50 45.00 45.00 45.00 45.00 4750  45.00
Pass@64 71.39 76.75 79.44 75.70 74.24 7245 67.17 77.07 7826 77.43

Avg@128 14.53 17.94 19.98 2145 2231 2228 22.04 23.67 24.64 24.56

OlympiadBench Cons@128 2341 26.22 27.11 28.00 28.44 29.63 29.48 32.00 33.04 33.78
Pass@64 55.45 55.01 56.70 56.49 55.80 55.84 55.45 56.73 57.57 58.09

Avg@128 39.85 45.48 4823 50.56 51.41 51.10 49.87 51.22 52.20 5226

MATH-500 Cons@128 56.80 60.60 62.60 62.00 61.60 62.40 61.80 62.60 65.40 64.60
Pass@64 87.63 87.16 87.38 88.36 88.88 88.81 88.82 89.49 90.18 89.95

Avg@128 9.11 10.52 11.19 11.99 12.52 1236 12.93 13.26 12.43 12.75

Minerva Cons@128 17.65 17.28 18.38 17.64 19.12 19.49 18.01 20.59 19.12 19.49
Pass @64 4454 4507 47.02 44.85 4397 4529 48.84 4853 4736 4755

Avg@128 13.90 16.45 17.72 19.06 19.65 19.72 19.11 20.01 20.38 20.49

Average Cons@128 22.56 23.18 24.68 26.41 2625 2775 26.83 28.37 28.62 28.26
Pass@64 4821 48.24 50.44 48.37 48.46 4935 48.84 50.98 49.83 50.99

Table 15: RL performance of the 10B-A0.5B MoE Model with 3 =0; A =0; A =0.

| #RLSteps | 100 200 300 400 500 600 700 800 900 1000

Avg@128 0.34 0.47 0.34 0.44 0.63 0.57 0.55 0.55 0.65 0.65

AIME24 Cons@128 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.33 0.00 0.00
Pass@64 12.88 12.94 11.42 11.68 12.93 1147 9.59 9.17 10.00 10.84

Avg@128 0.13 0.23 0.16 0.29 0.36 047 0.60 0.44 0.63 0.57

AIME25 Cons@128 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Pass@64 6.68 1127 8.35 14.80 16.58 19.10 18.67 14.10 16.66 16.59

Avg@128 10.64 11.82 11.95 13.07 14.26 16.11 1621 17.79 18.38 19.06

AMC23 Cons@128 20.00 25.00 17.50 27.50 25.00 30.00 27.50 35.00 32.50 37.50
Pass @64 75.83 76.02 70.67 7155 73.75 74.33 73.13 73.22 71.65 73.71

Avg@128 7.13 8.32 9.22 10.66 11.83 12.45 12.60 13.50 14.41 15.03

OlympiadBench Cons@128 14.81 16.00 17.04 20.00 21.04 21.33 21.19 2252 24.30 24.89
Pass@64 49.58 49.53 52.16 52.06 52.69 52.50 53.48 5334 52.67 5331

Avg@128 26.71 2891 3272 34.81 36.45 37.67 3847 39.60 4138 42.19

MATH-500 Cons@128 4560  48.40 49.80 52.40 54.40 54.40 55.20 56.20 58.20 58.20
Pass @64 82.96 82.71 83.72 83.39 85.93 85.79 85.64 86.01 86.04 85.75

Avg@128 5.66 5.70 6.42 6.93 7.22 7.84 7.98 8.28 8.36 8.73

Minerva Cons@128 9.93 10.66 11.40 12.50 11.40 13.24 12.87 12.50 12.50 13.97
Pass @64 42.39 40.93 41.04 4275 43.47 42.89 4435 4450 4090  44.90

Avg@128 8.44 9.24 10.14 11.03 11.79 12.52 12.74 13.36 13.97 14.37

Average Cons@128 15.06 16.68 15.96 18.73 18.64 19.83 19.46 21.59 2125 22.43
Pass @64 45.05 4557 44.56 46.04 47.56 47.68 47.48 46.72 4632 4752
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Table 16: RL performance of the 4B Dense Model with § = —0.25; A=0; A =0.

| #RLSteps | 100 200 300 400 500 600 700 800 900 1000

Avg@128 0.76 0.96 1.02 0.55 1.09 143 1.82 2.03 247 257

AIME24 Cons@128 0.00 333 333 0.00 0.00 333 333 6.67 6.67 6.67
Pass@64 14.17 17.11 1331 12.10 17.09 19.99 20.64 19.17 24.12 20.34

Avg@128 0.83 1.46 2.11 1.72 227 2.11 1.98 2.19 2.40 2.63

AIME25 Cons@128 0.00 0.00 333 333 333 333 3.33 3.33 6.67 3.33
Pass@64 17.46 1333 21.90 19.12 19.99 15.64 14.15 1651 11.67 15.82

Avg@128 19.55 25.47 29.08 30.96 31.70 31.72 3238 3285 33.01 33.09

AMC23 Cons@128 3250 40.00 40.00 45.00 45.00 50.00 50.00 45.00 50.00 50.00
Pass@64 7221 79.29 75.65 74.33 72.62 7248 70.62 71.24 76.36 74.00

Avg@128 14.44 17.77 19.71 20.38 21.52 21.44 22.98 2333 2352 23.67

OlympiadBench Cons@128 24.89 26.52 28.44 28.15 28.59 28.89 31.26 30.81 3111 31.26
Pass @64 54.46 56.71 57.38 55.02 58.18 55.17 57.97 5745 56.56 5723

Avg@128 3936 4523 4829 49.88 50.59 50.72 5233 52.50 53.09 52.98

MATH-500 Cons@128 58.00 60.40 62.00 60.80 63.20 62.40 62.20 61.60 61.80 62.20
Pass@64 87.37 87.68 88.34 88.53 88.89 89.18 89.02 88.82 89.21 89.94

Avg@128 9.23 10.71 11.16 12.03 12.14 1222 12.97 12.73 12.99 13.11

Minerva Cons@128 18.39 18.38 18.75 17.65 18.75 18.38 20.96 1875 18.38 19.49
Pass @64 4357 46.44 46.34 4635 46.30 4561 47.17 4557 46.61 4522

Avg@128 14.03 16.93 18.56 19.25 19.89 19.94 20.74 20.94 2125 21.34

Average Cons@128 22.30 24.77 25.98 25.82 26.48 271.72 28.51 27.69 29.11 28.83
Pass@64 4821 50.09 50.49 49.24 50.51 49.68 49.93 49.79 50.76 50.43

Table 17: RL performance of the 4B Dense Model with = 0.50; A =0; A = 0.

| #RLSteps | 100 200 300 400 500 600 700 800 900 1000

Avg@128 0.94 138 143 1.46 2.29 1.95 1.74 2.19 2.53 242

AIME24 Cons@128 333 333 333 333 6.67 333 3.33 3.33 3.33 333
Pass @64 18.77 23.78 16.58 20.87 23.65 19.99 18.98 24.56 23.62 22.08

Avg@128 0.83 1.88 1.95 2.03 339 357 276 3.67 4.14 4.66

AIME25 Cons@128 0.00 6.67 333 333 10.00 10.00 333 6.67 10.00 10.00
Pass@64 17.05 15.84 17.51 13.33 15.00 19.59 15.84 20.01 18.77 15.00

Avg@128 19.34 2252 23.09 26.35 26.60 25.46 2828 29.45 29.49 30.10

AMC23 Cons@128 32.50 37.50 37.50 40.00 45.00 42,50 37.50 4000 4250 4250
Pass @64 76.20 73.68 7533 71.56 7232 74.94 68.79 71.99 73.76 7335

Avg@128 14.37 18.07 2035 21.00 22.38 2227 22.24 2332 24.44 24.96

OlympiadBench Cons@128 23.56 2622 28.15 28.59 30.37 29.93 29.33 30.81 31.85 32.00
Pass@64 54.84 57.02 57.95 56.39 5725 58.01 55.62 57.67 57.93 56.91

Avg@128 3940 4570 48.18 49.46 5041 50.58 51.53 52.32 53.20 54.00

MATH-500 Cons@128 56.00 59.40 61.80 60.20 61.40 61.80 60.20 62.20 62.40 63.20
Pass @64 85.72 87.81 88.00 88.72 88.92 89.49 88.58 88.58 89.39 89.76

Avg@128 8.50 10.44 11.41 11.34 11.96 11.67 11.73 11.71 12.23 12.10

Minerva Cons@128 1691 16.91 17.65 18.01 18.01 1691 16.54 15.44 15.44 16.18
Pass @64 405 4532 44,50 43.82 44.10 43.17 4151 45.40 46.06 4345

Avg@128 13.90 16.67 17.74 18.61 19.51 19.25 19.71 20.44 21.01 2137

Average Cons@128 22.05 25.01 25.29 25.58 28.58 2741 25.04 2641 2759 27.87
Pass @64 49.18 50.58 49.98 49.12 50.21 50.87 4822 51.37 51.59 50.09
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Table 18: RL performance of the 10B-A0.5B MoE Model with § = —0.25; A=0; A=0.

| #RLSteps | 100 200 300 400 500 600 700 800 900 1000

Avg@128 0.29 0.49 0.86 0.49 0.49 0.86 0.86 0.78 0.86 115

AIME24 Cons@128 0.00 0.00 333 0.00 0.00 333 0.00 333 0.00 333
Pass@64 9.15 7.93 8.13 10.84 11.68 14.17 14.59 19.19 15.01 2127

Avg@128 0.16 0.29 0.36 0.36 0.63 0.63 0.89 0.70 081 1.04

AIME25 Cons@128 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Pass@64 8.35 13.78 15.46 792 19.81 17.11 19.20 13.12 14.17 1721

Avg@128 1152 14.02 16.88 18.48 19.47 21.05 22.44 22.66 2125 22.40

AMC23 Cons@128 30.00 35.00 37.50 37.50 37.50 32.50 35.00 35.00 32.50 30.00
Pass@64 75.75 7372 73.54 76.83 74.15 70.35 71.18 74.50 74.13 78.66

Avg@128 7.08 9.60 11.51 12.79 14.47 1571 16.85 16.02 16.78 17.68

OlympiadBench Cons@128 13.33 17.78 20.59 20.89 21.93 24.59 24.15 24.00 25.19 26.96
Pass @64 4716 49.12 52.08 51.30 50.62 52.86 53.15 52.78 54.66 55.99

Avg@128 24.43 3021 34.68 37.65 40.62 4261 4471 4535 4440 4486

MATH-500 Cons@128 4560  48.60 52.60 54.20 54.20 56.20 57.80 59.40 57.00 58.00
Pass@64 81.19 83.88 85.36 84.99 85.75 86.98 88.10 87.39 87.16 86.89

Avg@128 5.26 6.36 745 8.24 9.02 9.89 10.29 10.48 10.14 9.96

Minerva Cons@128 10.29 13.24 13.24 13.24 15.07 15.07 15.81 15.81 16.18 16.91
Pass @64 3870 41.40 4351 44.46 43.11 4572 45.94 45.16 45.82 44.46

Avg@128 8.12 10.16 11.96 13.00 14.12 15.13 16.01 16.00 1571 16.18

Average Cons@128 16.54 19.10 2121 2097 2145 21.95 2.13 22.92 21.81 2253
Pass@64 4338 44.97 46.35 46.06 47.52 47.87 48.69 48.69 48.49 50.75

Table 19: RL performance of the 10B-A0.5B MoE Model with § = 0.50; A = 0; A = 0.

| #RLSteps | 100 200 300 400 500 600 700 800 900 1000

Avg@128 0.42 0.29 0.65 0.70 0.68 0.78 0.68 1.02 0.94 1.04

AIME24 Cons@128 0.00 0.00 333 333 0.00 333 0.00 3.33 3.33 333
Pass @64 18.31 8.32 16.69 19.19 18.77 14.17 12,51 17.53 20.66 16.58

Avg@128 0.26 0.16 0.18 0.34 0.26 0.36 0.29 0.26 0.34 0.68

AIME25 Cons@128 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Pass@64 14.19 9.17 10.01 14.41 13.77 14.97 12.11 11.06 13.67 19.02

Avg@128 11.17 13.46 13.54 14.14 15.90 17.27 16.15 17.60 18.42 19.67

AMC23 Cons@128 17.50 25.00 22,50 25.00 25.00 30.00 27.50 30.00 32,50 32.50
Pass @64 70.56 72.46 71.53 7857 76.84 78.90 79.26 74.73 78.60 77.41

Avg@128 7.14 8.17 9.46 10.45 11.60 12.76 12.15 13.38 14.04 15.17

OlympiadBench Cons@128 14.81 15.56 16.59 19.11 20.44 21.63 20.44 21.78 2281 25.19
Pass@64 4723 50.58 51.54 51.79 52.53 51.78 52.20 52.60 5327 52.94

Avg@128 27.15 3051 33.40 34.80 36.67 3832 36.86 39.42 40.66 41.36

MATH-500 Cons@128 4440 4740 47.80 50.60 52.00 52.80 52.20 55.00 55.60 57.00
Pass @64 81.18 82.20 82.85 83.56 84.79 84.78 85.65 86.00 85.97 86.24

Avg@128 5.86 592 6.83 7.01 751 8.13 7.94 8.38 8.80 9.01

Minerva Cons@128 11.40 10.66 1176 11.03 12.13 12.13 12.50 13.97 13.60 16.91
Pass @64 4133 4259 4328 42.82 44.07 44.88 4456 44.13 46.17 4537

Avg@128 8.67 975 10.68 11.24 12.10 12.94 1235 13.34 13.87 14.49

Average Cons@128 14.69 16.44 17.00 18.18 18.26 19.98 18.77 20.68 2131 22.49
Pass @64 4547 4422 4598 4839 48.46 4825 47.72 47.68 49.72 49.59
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Table 20: RL performance of the 4B Dense Model with § = 0; A=0; A=-01.

| #RLSteps | 100 200 300 400 500 600 700 800 900 1000

Avg@128 0.70 0.70 0.76 0.89 1.07 0.81 0.86 1.15 1.38 1.46

AIME24 Cons@128 0.00 333 333 333 333 333 333 333 333 333
Pass@64 2251 12.51 15.01 14.19 13.77 15.01 20.87 21.03 22.93 23.70

Avg@128 0.76 1.09 1.46 1.90 1.67 232 2.11 3.02 372 3.18

AIME25 Cons@128 0.00 0.00 0.00 333 333 6.67 3.33 3.33 6.67 3.33
Pass@64 13.97 15.85 17.50 19.59 18.29 16.68 15.00 21.90 23.58 18.33

Avg@128 18.50 20.76 21.84 24.67 21.82 25.35 27.55 28.73 3047 3113

AMC23 Cons@128 3750 40.00 37.50 40.00 40.00 37.50 37.50 42.50 4250  45.00
Pass@64 7621 78.48 79.17 73.11 69.87 7731 72.07 75.05 73.18 77.07

Avg@128 13.79 15.29 17.63 19.50 18.03 19.51 20.84 2223 2358 24.72

OlympiadBench Cons@128 2.2 2430 25.04 26.81 27.11 27.41 27.41 29.63 29.78 31.70
Pass @64 54.56 56.07 55.14 55.54 56.67 56.07 55.65 56.93 57.90 56.66

Avg@128 37.92 40.85 43.98 45.69 4378 46.94 48.87 50.44 111 53.30

MATH-500 Cons@128 56.20 58.20 59.00 59.00 59.80 59.60 61.80 63.00 64.00 65.00
Pass@64 86.56 87.15 87.23 87.95 87.60 87.54 87.25 88.08 89.22 89.02

Avg@128 8.07 9.22 10.25 11.08 10.67 1143 12.28 12.54 12.24 13.13

Minerva Cons@128 17.28 18.01 15.07 15.81 17.28 16.18 16.54 18.01 18.38 18.38
Pass @64 4161 45.66 46.22 43.84 4371 44.43 4429 43.08 41.96 4228

Avg@128 13.29 14.65 15.99 17.29 16.17 17.73 1875 19.69 20.42 2125

Average Cons@128 2220 23.97 2332 2471 25.14 25.12 24.99 26.63 27.44 27.79
Pass@64 4924 4929 50.05 49.04 48.32 4951 49.19 51.01 51.46 51.18

Table 21: RL performance of the 4B Dense Model with § = 0; A = 0.1, A = 0.

| #RLSteps | 100 200 300 400 500 600 700 800 900 1000

Avg@128 0.49 0.55 0.91 0.73 0.68 0.63 0.68 0.76 0.91 128

AIME24 Cons@128 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 333
Pass @64 9.17 13.24 2337 8.13 18.97 17.10 20.65 17.94 16.37 2032

Avg@128 0.68 0.83 1.35 1.46 1.28 1.25 1.51 1.93 2.29 2.29

AIME25 Cons@128 0.00 0.00 333 333 333 333 333 333 333 6.67
Pass@64 21.79 22.09 17.83 20.01 16.61 15.81 17.48 15.84 16.26 15.00

Avg@128 18.24 20.59 24.16 25.16 23.89 28.38 29.20 29.57 31.43 32.68

AMC23 Cons@128 32.50 32.50 42.50 35.00 42,50 42,50 42,50 3750 4500  45.00
Pass @64 75.30 71.98 75.55 71.70 70.73 71.66 7238 72.02 75.16 74.30

Avg@128 13.38 16.45 18.73 19.53 19.28 21.67 21.92 22.44 2338 24.35

OlympiadBench Cons@128 22.96 25.48 27.56 27.70 27.11 29.48 29.33 29.93 3141 32.00
Pass@64 54.04 55.12 55.80 56.96 5631 55.42 57.13 56.75 57.94 57.64

Avg@128 3771 43.26 4734 48.65 48.09 51.15 51.84 52.49 53.79 54.85

MATH-500 Cons@128 56.00 58.80 62.20 63.20 63.60 63.80 62.80 64.80 64.60 65.40
Pass @64 84.83 87.11 88.42 88.69 87.97 87.80 87.65 88.55 88.98 88.76

Avg@128 8.00 930 10.37 10.83 11.03 11.39 1147 11.51 11.70 11.66

Minerva Cons@128 1471 16.54 16.91 18.38 16.91 1691 16.54 18.01 16.54 15.81
Pass @64 41.49 43.44 4578 44.18 44.17 4323 44.97 4422 4480 4556

Avg@128 13.08 15.16 17.14 17.73 17.38 19.08 19.44 19.78 20.58 21.19

Average Cons@128 21.03 222 2542 24.60 25.58 26.00 25.75 25.60 26.81 28.04
Pass @64 4777 48.83 51.13 4928 49.13 48.50 50.04 4922 49.92 50.26
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Table 22: RL performance of the 10B-A0.5B MoE Model with g = 0; A=0; A=—-01.

| #RLSteps | 100 200 300 400 500 600 700 800 900 1000

Avg@128 0.37 034 0.50 0.70 0.78 0.70 0.76 0.81 0.78 1.22

AIME24 Cons@128 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Pass@64 11.45 11.66 13.77 18.58 26.30 17.94 19.83 23.30 26.39 25.86

Avg@128 0.39 0.18 031 031 0.60 0.52 055 0.60 055 0.76

AIME25 Cons@128 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Pass@64 1250 10.84 12.83 1325 19.91 15.01 23.10 15.03 14.19 13.24

Avg@128 11.91 14.30 15.12 17.87 19.71 2027 21.72 22.68 22.87 2432

AMC23 Cons@128 25.00 35.00 27.50 35.00 32.50 37.50 35.00 37.50 3500 40.00
Pass@64 7228 75.78 74.15 75.68 77.69 7447 7545 70.93 80.24 73.19

Avg@128 8.08 9.71 10.69 12.87 14.36 14.86 15.96 16.31 16.76 17.47

OlympiadBench Cons@128 16.00 20.00 20.89 23.70 23.26 23.26 24.74 2533 24.59 25.93
Pass @64 49.35 50.50 52.65 54.15 53.54 53.70 54.05 55.85 54.78 54.95

Avg@128 27.41 32.00 34.17 38.08 40.73 41.59 43.06 4297 4400 4520

MATH-500 Cons@128 4720 51.20 53.60 55.00 57.40 58.00 57.80 58.40 59.40 59.00
Pass@64 84.11 84.77 84.79 36.88 86.96 87.37 86.11 87.32 87.34 87.70

Avg@128 5.54 6.92 744 8.61 9.29 9.17 9.88 9.82 9.92 10.03

Minerva Cons@128 11.76 15.44 15.81 1691 15.44 15.81 16.54 16.91 15.81 18.01
Pass @64 40.01 40.64 4159 4333 42.83 4431 4458 4451 4457 4425

Avg@128 8.95 10.58 1137 13.07 1425 14.52 15.32 15.53 15.81 16.50

Average Cons@128 16.66 2027 19.63 21.77 21.43 22.43 2235 23.02 2247 23.82
Pass@64 44.95 4570 4663 48.65 5121 48.80 50.52 49.49 5125 49.87

Table 23: RL performance of the 10B-A0.5B MoE Model with § = 0; A = 0.1; A = 0.

| #RLSteps | 100 200 300 400 500 600 700 800 900 1000

Avg@128 0.32 0.50 0.65 0.86 0.83 0.96 0.81 0.68 0.83 0.99

AIME24 Cons@128 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Pass @64 9.57 10.84 9.17 21.66 10.84 13.96 16.48 10.85 13.67 20.77

Avg@128 021 0.26 034 0.44 0.42 0.76 0.83 0.99 1.17 1.02

AIME25 Cons@128 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 333 333
Pass@64 8.97 10.65 14.62 16.81 11.14 18.23 18.34 1627 17.94 17.51

Avg@128 12.30 14.57 17.58 19.16 19.90 20.88 20.55 2135 20.63 19.86

AMC23 Cons@128 27.50 30.00 30.00 32.50 30.00 375 35.00 40.00 35.00 32.50
Pass @64 7135 67.79 73.48 73.13 74.08 7533 77.74 71.64 78.56 76.32

Avg@128 8.81 11.18 13.36 14.83 15.89 16.77 17.09 16.27 16.30 16.13

OlympiadBench Cons@128 15.70 19.11 21.78 23.85 24.59 25.04 24.89 24.44 24.00 24.30
Pass@64 4950  49.62 50.93 50.98 52.84 52.59 53.86 51.74 51.80 52.61

Avg@128 28.13 33.38 37.19 39.12 4151 42.88 43.12 4356 4353 42.68

MATH-500 Cons@128 48.00 50.40 52.00 53.20 57.00 57.40 57.20 58.40 58.40 58.80
Pass @64 83.25 83.85 86.04 85.39 85.14 85.43 85.67 85.36 86.33 86.73

Avg@128 550 6.58 7.76 831 9.08 3.88 8.95 7.83 7.89 778

Minerva Cons@128 8.46 12.13 11.40 12.50 15.44 15.07 13.97 11.03 9.93 11.40
Pass @64 40.19 40.53 42.63 4357 4428 4339 44.42 42.66 4290 4255

Avg@128 921 11.08 12.81 13.79 14.61 15.19 1523 15.11 15.06 14.74

Average Cons@128 16.61 18.61 19.20 20.34 21.17 22.50 21.84 231 21.78 2172
Pass @64 4381 43.88 46.15 48.59 46.39 48.16 49.42 46.42 48.53 49.42
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