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Abstract

Recent advancements have shown that reinforcement learning (RL) can substantially improve the
reasoning abilities of large language models (LLMs). The effectiveness of such RL training, how-
ever, depends critically on the exploration space defined by the pre-trained model’s token-output
distribution. In this paper, we revisit the standard cross-entropy loss, interpreting it as a specific
instance of policy gradient optimization applied within a single-step episode. To systematically
study how the pre-trained distribution shapes the exploration potential for subsequent RL, we
propose a generalized pre-training objective that adapts on-policy RL principles to supervised
learning. By framing next-token prediction as a stochastic decision process, we introduce a
reward-shaping strategy that explicitly balances diversity and precision. Our method employs a
positive reward scaling factor to control probability concentration on ground-truth tokens and a
rank-aware mechanism that treats high-ranking and low-ranking negative tokens asymmetrically.
This allows us to reshape the pre-trained token-output distribution and investigate how to provide a
more favorable exploration space for RL, ultimately enhancing end-to-end reasoning performance.
Contrary to the intuition that higher distribution entropy facilitates effective exploration, we find
that imposing a precision-oriented prior yields a superior exploration space for RL.

1 Introduction

Recent advancements have demonstrated that reinforcement learning (RL) (Bai et al., 2022; Guo et al., 2025) can
significantly enhance the reasoning capabilities of large language models (LLMs) (Google DeepMind, 2025; Guo
et al., 2025; Anthropic, 2025; Kimi et al., 2025). By utilizing verifiable rewards, such as passing unit tests or
deriving correct mathematical solutions, LLMs evolve from merely mimicking human data to actively searching for
optimal reasoning paths (Guo et al., 2025). On-policy training paradigms have proven effective in unlocking the
potential of pre-trained LLMs, prompting researchers to investigate how token output distributions influence RL.
Recent studies (Wang et al., 2025; Zhu et al., 2025b; Cui et al., 2025; Gandhi et al., 2025) indicate that uncertainty
in chain-of-thought reasoning is concentrated within a small subset of high-entropy forking tokens that govern
pivotal decisions, while the majority of tokens exhibit low entropy. This observation underscores the critical impact
of the pre-trained model’s output distribution on subsequent RL outcomes.

Concurrently, researchers have explored next-token and next-segment reasoning objectives to derive self-supervised
signals from massive unlabeled pre-training corpora (Zelikman et al., 2024; Dong et al., 2025; Li et al., 2025;
Xing et al., 2025). Applying RL to the pre-training corpus suggests a theoretical bridge connecting pre-training
and RL. Specifically, next-token prediction can be reformulated as a reasoning task optimized via RL algorithms,
where the model receives verifiable rewards for accurately predicting the subsequent token according to a given
context. Notably, if the intermediate reasoning process is omitted, resulting in the direct generation of the answer,
this procedure becomes analogous to standard pre-training. From the perspective of policy optimization, next-token
prediction serves a foundational role by defining the initial policy distribution for subsequent RL. This distribution
establishes the model’s behavioral trajectory and implicitly constrains its exploration space, thereby determining
which reasoning paths the model prioritizes during RL.

Motivated by this connection, we revisit the cross-entropy loss for next token prediction. Although traditionally
viewed as a supervised metric, cross-entropy can be interpreted as a specific instance of policy gradient optimization
within a single-step episode (Wu et al., 2025; Ming et al., 2025). This interpretation suggests that next-token
prediction inherently permits an on-policy perspective, even though standard teacher forcing utilizes off-policy
samples drawn directly from the training corpus distribution. From an entropy perspective, cross-entropy implicitly
assigns maximal reward to the single ground-truth token while uniformly suppressing all negative tokens. Building
on this insight, we aim to establish a unified pre-training objective that subsumes cross-entropy as a special case,
enabling a systematic study of how reward configurations during pre-training influence subsequent RL dynamics.

In this paper, we propose a generalized objective that integrates on-policy training principles into supervised learning.
By formulating next-token prediction as a stochastic decision process, we expose the intrinsic reward mechanism of
cross-entropy and introduce a reward-shaping strategy. This approach explicitly regulates the trade-off between
diversity and precision during pre-training, rather than deferring this balance to subsequent RL stages. Specifically,
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we introduce a positive reward scaling factor to control the concentration of probability mass on ground-truth tokens,
and we differentiate between high-ranking and low-ranking negative tokens to modulate suppression asymmetrically.
This strategy allows us to reshape the token output distribution and systematically analyze the relationship between
pre-training objectives and RL exploration. Contrary to the conventional intuition that higher distribution entropy
facilitates effective exploration, our findings reveal that imposing a precision-oriented prior yields a superior
exploration space for RL, ultimately enhancing end-to-end reasoning performance.

Our main contributions are summarized as follows:

• We propose a generalized pre-training objective for next-token prediction that incorporates a reward-shaping
strategy, utilizing a positive reward scaling factor and rank-aware negative suppression.

• We investigate how reshaping the token output distribution during pre-training modulates the exploration space
for subsequent RL, thereby impacting end-to-end reasoning performance.

• We demonstrate that a precision-oriented pre-training prior provides a more effective initialization for RL than
high-entropy distributions, leading to improved reasoning capabilities.

2 Method

2.1 Next Token Prediction

Autoregressive LLMs are typically trained using a next-token prediction objective. This process can be formulated
as a sequential decision-making problem where the LLM functions as a stochastic policy πθ .

Let X = {x1, x2, · · · , xn} denote a sequence of n tokens. At step t, the state st is defined by the prefix X<t =
{x1, x2, · · · , xt−1}. The action at corresponds to the next token, sampled from the vocabulary V according to the
policy πθ(· | st). The training objective optimizes the parameters θ to maximize the expected cumulative reward:

J(θ) = Eτ∼πθ

[ n

∑
t=1

r(st, at)
]
, (1)

where τ = (s1, a1, s2, a2, · · · ) represents a trajectory sampled from πθ , and r(st, at) is the scalar reward received
for taking action at in state st. The policy gradient can be derived as:

∇θ J(θ) = Eτ∼πθ

[ n

∑
t=1

R(τ)∇θ log πθ(at | st)
]
, (2)

where R(τ) = ∑n
t′=1 r(st′ , at′). To reduce variance without introducing bias, the total return R(τ) is typically

replaced by the return-to-go Gt = ∑n
t′=t r(st′ , at′), often incorporating a baseline b(st) for variance reduction:

∇θ J(θ) = Eτ∼πθ

[ n

∑
t=1

(Gt − b(st))∇θ log πθ(at | st)
]
. (3)

Building upon Equation (3), we treat the generation of a single token as a complete episode (Ming et al., 2025). The
objective for a fixed state st simplifies to:

Jt(θ | st) = Eat∼πθ(·|st)[r(st, at)], (4)

yielding the gradient:
∇θ Jt(θ | st) = Eat∼πθ(·|st)

[
r(st, at)∇θ log πθ(at | st)

]
. (5)

Crucially, for Equation (5) to remain consistent with the cumulative reward structure of Equation (3), the reward
r(st, at) must depend solely on the immediate state-action pair.

2.2 Revisiting Cross-Entropy

LLM pre-training is generally cast as a supervised learning process designed to maximize the log-likelihood of the
ground-truth token xt given the context st = X<t:

JCE(θ) = log πθ(xt | st). (6)

The gradient of this objective explicitly maximizes the probability of the ground-truth token:

∇θ JCE(θ) = ∇θ log πθ(xt | st). (7)

We can express this gradient as an expectation over the full policy distribution πθ(· | st), encompassing both
positive (at = xt) and negative (at ̸= xt) tokens. By invoking the log-derivative identity ∇θ log πθ(x) = ∇θ πθ(x)

πθ(x)
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and introducing the indicator function 1(at = xt), we expand the gradient into a summation over the vocabulary V:

∇θ JCE(θ) =
1

πθ(xt | st)
∇θπθ(xt | st)

=
1

πθ(xt | st)
∑

at∈V
1(at = xt)∇θπθ(at | st). (8)

We recover the probability density using the substitution ∇θπθ(at | st) = πθ(at | st)∇θ log πθ(at | st), and then
form an expectation:

∇θ JCE(θ) = ∑
at∈V

πθ(at | st)

[
1(at = xt)

πθ(at | st)
∇θ log πθ(at | st)

]
= Eat∼πθ(·|st) [rCE(st, at)∇θ log πθ(at | st)] . (9)

In supervised training, the ground-truth token xt is deterministically defined by the dataset. Consequently, the
indicator 1(at = xt) evaluates the action at against a static property of st, ensuring that the derived intrinsic reward
depends exclusively on information available at step t. Comparing Equation (9) with Equation (5) reveals the
intrinsic reward function of cross-entropy:

rCE(st, at) = sg(
1(at = xt)

πθ(at | st)
), (10)

where sg(·) denotes the stop-gradient operator. Equation (10) demonstrates that when the sampled action matches
the ground truth (at = xt), the reward is scaled by the inverse probability 1

πθ(xt |st)
. On the contrary, for all negative

tokens, the intrinsic reward is exactly 0. Unlike RL scenarios where negative actions are often explicitly penalized,
cross-entropy achieves suppression of negative tokens implicitly through the Softmax normalization constraint

∑
at∈V

πθ(at | st) = 1. By increasing the probability of the positive tokens via positive rewards, the probabilities of

competing tokens are forced to decrease.

2.3 Diversity or Precision

As derived in Equation (10), the intrinsic reward of the cross-entropy objective implicitly balances diversity and
precision. To explicitly regulate the trade-off between these two objectives, we propose a generalized reward
function designed to independently control the influence of positive and negative tokens.

First, we introduce a modulating factor to scale the reward associated with the ground-truth token. Let at denote the
generated token and xt the ground truth, we define the modified positive reward as:

r̄pos(st, at) = sg((
1

πθ(at | st)
)(1−πθ(at |st))

β
), (11)

where (1 − πθ(at | st))β serves as a positive reward scaling factor. Equation (11) facilitates the control of global
entropy. Specifically, when β < 0, the reward is amplified relative to the baseline (β = 0). This produces large
gradient updates that aggressively concentrate probability mass onto the ground truth, collapsing the distribution
and minimizing global entropy. Conversely, β > 0 attenuates the reward signal. In this regime, the model is less
penalized for assigning a lower probability to the ground truth, allowing the policy to maintain a flatter distribution
with higher entropy.

Second, while standard cross-entropy assigns zero reward to all negative tokens, we propose shaping the negative
distribution to control local entropy. Let Kt = TopK(πθ(· | st), k) denote the set of the top-k predicted tokens, we
define the negative reward as:

r̄neg(st, at) =λ̃ · 1(at ∈ Kt ∧ at ̸= xt) + λ̂ · 1(at /∈ Kt ∧ at ̸= xt). (12)

As shown in Equation (12), we assign a reward λ̃ to high-ranking negative tokens to prevent the model from
becoming overly confident in the ground truth alone, thereby reserving probability mass for plausible alternatives.
Meanwhile, to suppress low-probability tail tokens, we apply a reward λ̂ to tokens falling outside Kt, forcing the
distribution to concentrate on the head.

Finally, the generalized reward function for the single-step objective is defined as:

r̄(st, at) = r̄pos(st, at) · 1(at = xt) + r̄neg(st, at) · 1(at ̸= xt). (13)

Notably, the setting β = 0, λ̃ = 0, λ̂ = 0 recovers standard cross-entropy.
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3 Experiments

3.1 Training Settings

The training pipeline proceeds in three stages: pre-training, mid-training, and RLVR. Adhering to the Qwen3 (Yang
et al., 2025), we develop LLMs using both dense and MoE architectures. Specifically, we develop a series of LLMs,
which include 1B and 4B dense models, as well as 5B-A0.3B and 10B-A0.5B MoE models. Moreover, we conduct
the complete training pipeline on the 4B and 10B-A0.5B models, while the 1B and 5B-A0.3B models undergo the
pre-training stage only. More training details are provided in Section A and Section B.

Training Data. For pre-training, we curate a corpus of 500B tokens primarily focused on general knowledge. This is
followed by a mid-training stage comprising 100B tokens, which incorporates approximately 5% synthetic data and
significantly increases the proportion of reasoning-oriented content. Crucially, we deliberately exclude the synthetic
long-reasoning data from all training stages to accurately observe the activation trends of the model’s long-CoT
reasoning capabilities. The RL stage prioritizes mathematical reasoning tasks, as the emergence of long-reasoning
capabilities is typically associated with these domains.

Hyperparameters. Hyperparameters are maintained across the pre-training and mid-training stages. Our goal is to
investigate how different reward shaping strategies influence end-to-end performance. Consequently, we perform
specific reward configurations for positive tokens (β = −0.25 and β = 0.5) and negative tokens (λ̂ = −0.1, λ̃ =
0, k = 100 and λ̂ = 0, λ̃ = 0.1, k = 100). Employing these distinct hyperparameter configurations allows us to
isolate the specific effects of positive and negative reward signals.

3.2 Evaluation Settings

Evaluation of Base Models. Our comprehensive evaluation of base models assesses five core capabilities: general
knowledge, logic reasoning, commonsense reasoning, mathematics, and coding. The evaluation is conducted using
19 distinct benchmarks:

• General Knowledge: MMLU (Hendrycks et al., 2020)(4-shot, CoT), MMLU-Pro (Wang et al., 2024)(5-
shot, CoT), TriviaQA (Joshi et al., 2017)(5-shot), and NaturalQuestions (Kwiatkowski et al., 2019)(5-shot).

• Commonsense Reasoning: Hellaswag (Zellers et al., 2019)(0-shot), SIQA (Sap et al., 2019)(0-shot),
PIQA (Bisk et al., 2020)(0-shot), WinoGrande (Sakaguchi et al., 2021)(0-shot), OpenBookQA (Mihaylov
et al., 2018)(5-shot), and CommonsenseQA (Talmor et al., 2018)(5-shot)

• Logic Reasoning: ARC-Easy (Clark et al., 2018)(0-shot), ARC-Challenge (Clark et al., 2018)(0-shot),
and BBH (Suzgun et al., 2022)(3-shot, CoT)

• Mathematics: GSM8K (Cobbe et al., 2021)(4-shot, CoT), MATH-500 (Lightman et al., 2023)(4-shot,
CoT), Minerva (Lewkowycz et al., 2022)(4-shot, CoT), and OlympiadBench (He et al., 2024)(0-shot).

• Coding: HumanEval+ (Liu et al., 2023)(0-shot) and MBPP+ (Liu et al., 2023)(3-shot).

Specifically, general knowledge and commonsense reasoning evaluate the model’s knowledge-base capabilities,
whereas logical reasoning, mathematics, and coding probe its reasoning-base capabilities. Moreover, we employ
the Pass@k metric to evaluate the model’s upper-bound capability for tasks requiring mathematical reasoning and
code generation. Pass@k measures the probability that at least one correct solution is present within k independent
attempts. We utilize the unbiased estimator of Pass@k (Chen, 2021), which is defined as:

Pass@k = 1 −
(m−c

k )

(m
k )

, (14)

where m represents the total number of sampled responses generated per prompt, and c denotes the count of correct
responses among those m samples. We sample m = 128 responses with temperature 0.7 and top-p 0.95 and report
Pass@64 metric. Notably, we configure the maximum output length to 4K for pre-trained models and 16K for
mid-trained models.

Evaluation of RL Models. For RL models evaluation, we employ various mathematics benchmarks, including
AMC23 (MAA, b), AIME (MAA, a), MATH-500 (Lightman et al., 2023), Minerva (Lewkowycz et al., 2022), and
OlympiadBench (He et al., 2024). We sample 128 responses per problem and report Avg@128, Cons@128, and
Pass@64 metrics. Specifically, Avg@128 represents the average accuracy across all 128 samples, while Cons@128
refers to the majority voting accuracy. Similarly, we configure the maximum output length to 16K for RL models.

3.3 Pre-Training

Our analysis of the proposed generalized training objective reveals that it effectively regulates the trade-off between
diversity and precision by strategically varying reward configurations. As illustrated in Figure 1 and Figure 2,
perplexity (PPL) consistently converges to comparable low values across both dense (1B, 4B) and MoE (5B-A0.3B,
10B-A0.5B) architectures. This demonstrates that, within a specific range, modifying the reward function modulates
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Figure 1: Changes of PPL and entropy during pre-training across 1B and 4B dense models, developed based on
different configurations.
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Figure 2: Changes of PPL and entropy during pre-training across 5B-A0.3B and 10B-A0.5B MoE models, developed
based on different configurations.

training dynamics without compromising final predictive accuracy. The parameter β serves as a potent global entropy
regulator. Specifically, setting β < 0 significantly reduces entropy, resulting in a more peaked and confident token
distribution by amplifying rewards for ground turth tokens. Conversely, β > 0 maintains higher entropy and a flatter
distribution, thereby promoting diversity in the generated output. Meanwhile, the parameters λ̂ and λ̃ facilitate local
entropy fine-tuning. These parameters shape the token distribution by either rewarding (λ̂ = 0, λ̃ = 0.1, k = 100)
or penalizing (λ̂ = −0.1, λ̃ = 0, k = 100) negative tokens, enabling granular control over the training process.

Furthermore, we analyze the evolution of model performance during pre-training to investigate the dynamics and
specific impact of the proposed reward function. As depicted in Figure 3, larger models consistently achieve
substantially higher final performance than smaller models after processing an equivalent number of training tokens.
This confirms that explicitly regulating the diversity-precision trade-off is an orthogonal mechanism that does
not interfere with the fundamental scaling properties of language models. Crucially, configurations that prioritize
lowering global entropy (β < 0) or maintaining high local entropy (λ̂ = −0.1, λ̃ = 0, k = 100) demonstrate
superior performance and scaling behavior. Although these settings may not yield optimal initial performance in
smaller models, they exhibit enhanced growth potential as model size increases. This suggests that with greater
model capacity, strategies that promote precision, either globally via generously rewarding positive tokens or locally
by aggressively penalizing tail negative tokens, lead to better performance growth compared to the baseline.

3.4 Mid-Training

Subsequently, we evaluate the evolution of model performance during the mid-training stage, spanning from 0B
to 100B tokens. As depicted in Figure 4, the choice of β significantly influences training dynamics. We observe
a consistent trend where a negative value, specifically β = −0.25, yields the best results. This configuration
consistently outperforms the baseline (β = 0) across both dense and MoE models in knowledge and reasoning
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Figure 3: Changes of performance during pre-training across models with various model parameters, developed
based on dense and MoE architectures under different configurations.
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Figure 4: Changes of performance during mid-training across 4B dense and 10B-A0.5B MoE models, developed
based on different configurations.

tasks. Conversely, a positive setting (β = 0.50) does not demonstrate consistent superior performance comparing to
the baseline. Similar to the observations with β, a slight negative adjustment appears beneficial. The configuration
λ̂ = −0.1, λ̃ = 0, k = 100 generally matches or slightly surpasses the performance of the standard CE baseline.
However, when shifting to λ̂ = 0.1, λ̃ = 0, k = 100, performance exhibited uncertainty in knowledge-intensive
scenarios. In reasoning tasks, the performance remained comparable to the standard CE baseline.

3.5 Reinforcement Learning

Finally, we investigate the performance dynamics during the RL training stage across various actor models, as
illustrated in Figure 5 and Figure 6. Pre-trained models derived from different reward configurations exhibit distinct
output distributions, leading to significant variations in subsequent RL and end-to-end reasoning performance.
Regarding the global entropy regulator β, we observe a consistent and robust trend across both the 4B dense and
10B-A0.5B MoE models. Specifically, the global low entropy setting (β = −0.25) yields superior performance
trajectories. This configuration consistently outperforms the global high entropy setting across all evaluated metrics,
including Avg@128, Cons@128, and Pass@64. Furthermore, the configuration λ̂ = −0.1, λ̃ = 0, k = 100
demonstrates a significant advantage, consistently achieving the highest performance and notably surpassing the
baseline on the 10B-A0.5B MoE model. For the 4B dense model, maintaining local high entropy exhibits a
superior scaling trend compared to the baseline. In conclusion, strategies that promote precision, either globally via
generously rewarding positive tokens or locally by aggressively penalizing tail negative tokens, enables the model to
converge to higher-quality solutions, potentially providing a better exploration space for RL.

To better understand the performance divergence observed during RL, we analyze the evolution of policy entropy
and response length throughout the training process, as illustrated in Figure 7. Contrary to the expectation that higher
entropy maintains diversity, setting a higher β leads to rapid entropy collapse during the early stages of training.
Coinciding with this collapse, the response length decreases drastically, indicating a suppression of the reasoning
capability. In contrast, local high-entropy configurations exhibit greater stability. These settings effectively prevent
entropy collapse, maintaining a robust policy distribution from the onset. They demonstrate a smooth and continuous
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Figure 5: Changes of performance during RL training across various actor models, developed based on a 4B dense
architecture under different configurations.
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Figure 6: Changes of performance during RL training across various actor models, developed based on a 10B-A0.5B
MoE architecture under different configurations.
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Figure 7: Changes of entropy and response length during RL training across various actor models, developed based
on 4B dense and 10B-A0.5B MoE architectures under different configurations.

activation of long reasoning capabilities, allowing for a steady increase in generation length and reasoning depth
without the recovery lag observed in global high entropy settings.

3.6 Pass@k Analysis of Base Models

Moreover, we analyze the Pass@k curves as k increases to estimate the upper bound of the capability of base
models. This metric relies on a delicate equilibrium between solution precision and diversity. As shown in Figure 8,
maximizing global diversity (high entropy) does not inherently yield higher Pass@k curves. Instead, superior
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Figure 8: Pass@k curve of base models on mathematics reasoning and code generation tasks, developed based on
4B dense and 10B-A0.5B MoE models under different configurations.

Pass@k scores in mathematics and coding tasks are achieved by prioritizing precision. Crucially, we observe that
this low-entropy setting does not lead to a collapse in output diversity. Rather, it maintains sufficient variation to
cover the solution space. Furthermore, the data indicate that promoting local diversity also yields better results. This
suggests that while models benefit from high precision, they simultaneously benefit from targeted local exploration.

4 Related Works

4.1 Weighted Cross-Entropy Loss

The standard cross-entropy objective can be generalized within a policy-gradient framework, where it is equivalent
to optimizing a sparse reward defined as rCE(st, at) = 1(at = xt)πθ(at | st)−1. Existing modifications to this
objective include smooth loss (label smoothing), which encourages diversity by allocating a uniform probability mass
to all positive tokens, and focal loss (Lin et al., 2018), which down-weights easy examples via wt = (1 − πθ(xt |
st))γ. Our proposed generalized training objective can also formulate these established variations. In this paper, we
specifically explore two different reward configurations within this framework. Firstly, we introduce a modified
positive reward, which is equivalent to applying a state-dependent weight wt = πθ(xt | st)1−(1−πθ(xt |st))

β
to the

standard cross-entropy. In addition, we incorporate TopK-based negative shaping, which explicitly controls local
entropy by assigning non-zero rewards to selected actions with at ̸= xt.

4.2 Next Token Reasoning

Treating each token emission as a distinct episode ensures that the reward depends only on the immediate state-
action pair (st, at), thereby preserving unbiased credit assignment. The framework is naturally compatible
with architectures that perform iterative internal computation prior to token emission, including latent-reasoning
models (Zelikman et al., 2024) and loop transformers (Dehghani et al., 2019; Zhu et al., 2025a). Although each
episode terminates at token emission, the state st may encode the outcome of internal refinement cycles. Our
reward design can serve as an uncertainty-aware learning signal that can be combined with adaptive computation
policies to allocate additional internal processing steps in uncertain contexts. By explicitly shaping positive and
negative token-level rewards within a single-step policy-gradient framework, we provide a general and controllable
mechanism that natively supports reasoning-oriented architectures through principled reward design.

5 Conclusion

This study establishes a theoretical bridge between next-token prediction and RL by interpreting cross-entropy
loss as a specific instance of policy gradient optimization. To exploit this connection, we introduce a generalized
pre-training objective that utilizes a reward-shaping strategy with positive scaling and rank-aware negative rewards.
Our experiments across multiple architectures and scales reveal that regulating the diversity-precision trade-off
during pre-training modulates token entropy. Our findings indicate that precision-focused strategies (e.g., global
entropy reduction or tail-token suppression) yield superior scaling for the subsequent RL stage. These insights
provide a novel perspective on optimizing pre-training for long CoT reasoning, suggesting new directions for
sophisticated reward shaping in LLM development.
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A Experiment Details for Pre-Training and Mid-Training

A.1 Implementation Details

For both the pre-training and mid-training phases, we employ the AdamW (Loshchilov & Hutter, 2017) optimizer,
implementing a weight decay of 0.1 and applying gradient clipping at 1.0. Throughout these stages, we utilize
a warmup-stable-decay learning rate schedule with a global batch size of 16M. During the stable pre-training
stage, which encompasses 500B tokens, the learning rate warms up over 2000 steps before stabilizing at 3 × 10−4.
Subsequently, we perform mid-training on an additional 100B tokens, gradually decaying the learning rate from
3 × 10−4 to 3 × 10−5. We set the maximum sequence length to 4096 during pre-training and extend it to 16384 for
the mid-training stage. To support long-context modeling during mid-training, we increase the base frequency of
RoPE (Su et al., 2024) from 1e4 to 1e6.

A.2 Model Architecture

Building upon the Qwen3 (Yang et al., 2025) architectures, we perform our experiments utilizing both dense and
MoE architectures. Notably, we adopt an auxiliary loss free approach (Liu et al., 2024) for the training of the MoE
models. Detailed architecture settings are provided in Table 1, where E denotes the total number of experts and Ea
denotes the number of active experts.

Table 1: Detailed architectures settings of dense and MoE models.

Model nlayer dmodel dffn dexpert nhead nkvhead E Ea

1B Dense 28 1536 4608 - 16 4 - -
4B Dense 36 2560 9728 - 32 8 - -

5B-A0.3B MoE 12 1024 - 320 32 4 384 12
10B-A0.5B MoE 16 1536 - 320 32 4 384 12

A.3 Experiment Results

We report comprehensive evaluation results to demonstrate performance progression throughout the training process.
Tables 2 to 9 present the pre-training results across various models and different training tokens. Similarly, Tables 10
to 13 summarize the performance metrics for the mid-training stage.

B Experiment Details for RL

B.1 Implementation Details

For RLVR on mathematical reasoning tasks, we employ the on-policy GRPO algorithm (Shao et al., 2024) without
KL regularization. Following Yu et al. (2025), we incorporate clip-higher and dynamic sampling strategies to
stabilize training. The process is conducted in two stages: an initial 700 steps with a sequence length of 8K, followed
by continued training at a sequence length of 16K. We maintain a batch size of 128 and a constant learning rate of
1 × 10−6 for two stages. During training, we sample 16 outputs per prompt at a temperature of 1.0.

B.2 Experiment Results

We provide detailed evaluation results to illustrate performance trajectories during the RL process. Tables 14 to 23
display the RL results across different models and training steps.
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Table 2: Pre-Training performance comparison across different β based on 1B dense models. The highest
scores at the final checkpoint across the different configurations are shown in bold.

Hyperparameters β = −0.25; λ̃ = 0; λ̂ = 0 β = 0; λ̃ = 0; λ̂ = 0 β = 0.50; λ̃ = 0; λ̂ = 0

# Pre-Trained Tokens 125B 250B 375B 500B 125B 250B 375B 500B 125B 250B 375B 500B

General
Knowledge

MMLU (Acc.) 20.47 23.65 24.06 25.12 20.85 23.39 24.04 26.62 21.71 24.26 24.37 25.51
MMLU-Pro (Acc.) 8.01 9.25 9.54 10.06 7.63 8.23 7.98 9.02 7.85 8.55 9.44 9.59
NaturalQuestions (EM) 3.02 4.34 4.88 5.35 2.74 4.07 4.52 5.79 2.69 3.77 4.18 5.21
TriviaQA (EM) 8.45 12.32 14.75 16.03 8.65 12.63 13.53 16.25 8.35 12.39 14.24 16.49
Average 9.99 12.39 13.31 14.14 9.97 12.08 12.52 14.42 10.15 12.24 13.06 14.20

Commonsense
Reasoning

Hellaswag (Acc.) 38.24 44.17 46.17 47.49 38.96 44.42 46.26 48.33 38.88 43.95 46.83 48.06
SIQA (Acc.) 38.43 42.22 40.53 39.15 40.02 40.33 41.50 42.32 39.36 40.84 42.02 42.32
PIQA (Acc.) 67.36 69.53 69.70 71.27 67.90 69.75 71.00 71.11 67.57 69.59 70.62 70.02
WinoGrande (Acc.) 51.70 49.96 52.09 51.62 52.49 52.17 52.80 53.83 53.43 54.54 54.70 53.28
OpenBookQA (Acc.) 31.40 32.40 31.80 32.20 29.80 32.20 33.60 32.80 30.00 31.60 31.80 33.40
CommonsenseQA (Acc.) 19.66 19.00 21.13 20.80 19.57 21.79 19.82 20.07 20.15 19.41 20.72 20.56
Average 41.13 42.88 43.57 43.76 41.46 43.44 44.16 44.74 41.57 43.32 44.45 44.61

Knowledge Average 25.56 27.64 28.44 28.95 25.71 27.76 28.34 29.58 25.86 27.78 28.75 29.40

Logic
Reasoning

ARC-e (Acc.) 52.74 55.30 59.43 59.26 51.64 55.68 56.70 58.80 49.24 55.64 55.51 58.88
ARC-c (Acc.) 25.34 27.47 30.03 30.97 27.30 29.44 29.52 29.01 25.51 27.05 27.30 27.90
BBH (Acc.) 23.47 23.41 26.46 26.68 22.13 22.56 25.68 27.34 25.13 22.49 24.99 26.37
Average 33.85 35.39 38.64 38.97 33.69 35.89 37.30 38.38 33.29 35.06 35.93 37.72

Mathematics

GSM8K (Pass@64) 40.06 43.01 46.15 49.52 41.09 48.78 48.77 48.76 43.52 46.65 46.58 49.98
MATH-500 (Pass@64) 34.16 37.09 39.79 38.15 33.41 35.43 37.10 38.49 30.41 39.64 40.80 38.97
Minerva (Pass@64) 14.62 16.19 17.07 15.76 16.44 16.71 14.80 16.43 14.94 15.32 16.54 15.99
OlympiadBench (Pass@64) 20.39 22.72 23.50 22.35 21.06 21.01 21.85 21.83 20.83 22.91 23.00 22.91
Average 27.31 29.75 31.63 31.45 28.00 30.48 30.63 31.38 27.43 31.13 31.73 31.96

Coding
HumanEval+ (Pass@64) 8.06 13.03 15.46 15.81 8.71 12.15 12.72 15.95 7.68 11.92 13.67 14.55
MBPP+ (Pass@64) 21.39 33.69 40.36 41.70 20.63 34.37 37.53 41.67 16.58 31.37 38.18 39.26
Average 14.73 23.36 27.91 28.76 14.67 23.26 25.13 28.81 12.13 21.65 25.93 26.91

Reasoning Average 25.29 29.50 32.73 33.06 25.45 29.88 31.02 32.86 24.28 29.28 31.20 32.19

Average 25.40 28.76 31.01 31.41 25.56 29.03 29.95 31.55 24.91 28.68 30.22 31.08

Table 3: Pre-Training performance comparison across different β based on 4B dense models. The highest
scores at the final checkpoint across the different configurations are shown in bold.

Hyperparameters β = −0.25; λ̃ = 0; λ̂ = 0 β = 0; λ̃ = 0; λ̂ = 0 β = 0.50; λ̃ = 0; λ̂ = 0

# Pre-Trained Tokens 125B 250B 375B 500B 125B 250B 375B 500B 125B 250B 375B 500B

General
Knowledge

MMLU (Acc.) 24.98 30.94 34.38 36.38 25.76 29.91 33.61 36.17 24.45 30.14 32.84 36.55
MMLU-Pro (Acc.) 8.81 11.11 11.99 13.47 9.25 10.90 11.71 12.23 8.48 9.93 10.96 12.63
NaturalQuestions (EM) 6.87 9.11 10.89 12.58 6.65 9.75 10.89 12.22 6.32 8.92 10.28 11.69
TriviaQA (EM) 17.26 25.14 30.39 33.39 17.91 25.94 27.80 33.83 17.19 24.26 30.10 32.90
Average 14.48 19.08 21.91 23.96 14.89 19.13 21.00 23.61 14.11 18.31 21.05 23.44

Commonsense
Reasoning

Hellaswag (Acc.) 50.36 57.81 60.80 63.01 50.22 57.00 60.50 62.91 39.15 57.49 60.98 62.87
SIQA (Acc.) 42.99 44.27 44.32 45.44 42.37 43.35 43.65 44.73 41.40 41.71 43.24 44.78
PIQA (Acc.) 71.98 74.65 75.52 75.57 72.42 74.70 75.35 76.28 71.76 74.43 74.32 75.46
WinoGrande (Acc.) 52.72 56.12 57.22 59.04 53.67 55.80 56.67 58.72 53.67 55.80 56.67 58.72
OpenBookQA (Acc.) 33.00 36.00 36.00 36.80 33.40 36.40 37.00 36.00 34.00 36.00 37.80 39.40
CommonsenseQA (Acc.) 21.13 29.48 37.43 49.63 20.39 28.26 47.91 52.91 18.43 29.32 37.10 48.98
Average 45.36 49.72 51.88 54.92 45.41 49.25 53.51 55.26 42.85 48.88 51.91 55.03

Knowledge Average 29.92 34.40 36.90 39.44 30.15 34.19 37.26 39.44 28.48 33.59 36.48 39.23

Logic
Reasoning

ARC-e (Acc.) 61.15 66.84 69.44 70.29 60.27 63.05 67.97 67.55 58.96 64.98 65.82 66.75
ARC-c (Acc.) 31.83 35.49 36.77 37.80 30.55 33.96 36.77 37.54 31.91 33.61 37.12 37.12
BBH (Acc.) 26.14 26.32 30.36 31.65 26.54 27.42 29.53 28.29 25.02 26.95 28.17 29.78
Average 39.71 42.88 45.52 46.58 39.12 41.48 44.76 44.46 38.63 41.85 43.70 44.55

Mathematics

GSM8K (Pass@64) 49.66 62.66 67.23 71.19 48.43 60.24 68.75 71.26 50.39 61.71 69.88 71.98
MATH-500 (Pass@64) 39.07 47.73 48.62 51.14 38.19 48.15 48.88 51.54 40.86 46.72 48.23 51.67
Minerva (Pass@64) 15.48 20.73 19.37 20.07 15.09 19.22 19.68 20.63 16.33 18.45 17.64 19.85
OlympiadBench (Pass@64) 22.24 24.87 24.08 24.18 21.79 25.53 23.70 24.84 22.23 23.81 25.33 24.87
Average 31.61 39.00 39.83 41.65 30.88 38.29 40.25 42.07 32.45 37.67 40.27 42.09

Coding
HumanEval+ (Pass@64) 17.11 22.94 27.79 31.29 17.32 23.22 30.08 29.13 16.73 24.36 27.72 28.52
MBPP+ (Pass@64) 44.07 59.66 65.54 65.63 40.66 56.64 65.69 66.29 43.90 59.74 65.07 65.65
Average 30.59 41.30 46.67 48.46 28.99 39.93 47.89 47.71 30.32 42.05 46.40 47.09

Reasoning Average 33.97 41.06 44.00 45.56 33.00 39.90 44.30 44.75 33.80 40.52 43.46 44.58

Average 32.35 38.40 41.16 43.11 31.86 37.61 41.48 42.62 31.67 37.75 40.66 42.44
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Table 4: Pre-Training performance comparison across different β based on 5B-A0.3B MoE models. The
highest scores at the final checkpoint across the different configurations are shown in bold.

Hyperparameters β = −0.25; λ̃ = 0; λ̂ = 0 β = 0; λ̃ = 0; λ̂ = 0 β = 0.50; λ̃ = 0; λ̂ = 0

# Pre-Trained Tokens 125B 250B 375B 500B 125B 250B 375B 500B 125B 250B 375B 500B

General
Knowledge

MMLU (Acc.) 22.70 27.21 29.36 29.77 23.10 25.12 29.17 31.19 24.13 26.99 28.40 30.34
MMLU-Pro (Acc.) 8.80 8.56 9.42 11.16 9.47 8.89 10.06 11.87 8.62 9.83 9.15 10.36
NaturalQuestions (EM) 5.21 7.45 8.45 10.06 5.15 7.51 8.73 10.42 5.76 7.48 8.78 10.17
TriviaQA (EM) 15.05 22.23 25.51 28.08 14.93 22.03 25.27 28.25 13.75 21.27 25.96 28.00
Average 12.94 16.36 18.19 19.77 13.16 15.89 18.31 20.43 13.07 16.39 18.07 19.72

Commonsense
Reasoning

Hellaswag (Acc.) 47.89 54.08 56.70 57.78 48.54 54.63 56.88 57.41 48.58 54.31 56.81 58.13
SIQA (Acc.) 40.53 41.25 42.68 43.14 41.25 42.27 43.76 42.68 40.28 42.43 42.01 43.19
PIQA (Acc.) 71.49 72.63 73.67 75.24 71.27 73.18 74.43 74.76 71.60 73.45 74.59 74.59
WinoGrande (Acc.) 52.88 53.35 57.54 57.38 50.43 53.20 56.51 56.20 52.01 54.22 55.09 56.43
OpenBookQA (Acc.) 30.80 35.60 34.00 36.60 31.20 32.80 34.40 33.60 33.80 34.00 35.80 35.60
CommonsenseQA (Acc.) 20.64 27.27 33.25 38.57 18.67 22.93 28.50 35.38 19.41 22.69 25.88 31.37
Average 44.04 47.36 49.64 51.45 43.56 46.50 49.08 50.01 44.28 46.85 48.36 49.89

Knowledge Average 28.49 31.86 33.91 35.61 28.36 31.19 33.69 35.22 28.67 31.62 33.22 34.80

Logic
Reasoning

ARC-e (Acc.) 57.79 60.98 62.12 62.08 58.54 62.92 64.48 63.34 58.12 64.02 63.55 63.38
ARC-c (Acc.) 27.47 32.25 32.94 34.39 30.80 34.81 35.67 35.15 28.67 33.36 34.13 34.56
BBH (Acc.) 23.30 26.80 27.12 27.85 23.97 25.79 27.71 27.03 25.94 26.69 27.00 27.49
Average 36.19 40.01 40.73 41.44 37.77 41.17 42.62 41.84 37.58 41.36 41.56 41.81

Mathematics

GSM8K (Pass@64) 52.99 59.43 64.26 66.78 51.48 59.15 61.81 65.65 51.36 56.21 62.12 65.04
MATH-500 (Pass@64) 39.15 43.06 48.46 52.00 37.57 43.69 46.91 51.19 38.99 42.89 47.80 48.26
Minerva (Pass@64) 17.91 18.98 18.79 21.79 15.47 16.93 18.00 17.92 14.81 18.87 17.61 19.36
OlympiadBench (Pass@64) 22.79 23.65 24.29 25.62 23.50 24.14 23.40 24.42 23.73 23.10 25.18 26.00
Average 33.21 36.28 38.95 41.55 32.01 35.98 37.53 39.80 32.22 35.27 38.18 39.67

Coding
HumanEval+ (Pass@64) 18.11 23.31 26.20 28.44 17.52 22.79 26.15 29.32 17.14 22.20 27.53 27.95
MBPP+ (Pass@64) 37.25 55.06 58.57 60.06 39.81 54.29 55.93 57.77 38.75 52.50 56.45 59.97
Average 27.68 39.19 42.39 44.25 28.67 38.54 41.04 43.55 27.95 37.35 41.99 43.96

Reasoning Average 32.36 38.49 40.69 42.41 32.81 38.56 40.40 41.73 32.58 37.99 40.58 41.81

Average 30.81 35.84 37.98 39.69 31.03 35.62 37.72 39.12 31.02 35.44 37.63 39.01

Table 5: Pre-Training performance comparison across different β based on 10B-A0.5B MoE models. The
highest scores at the final checkpoint across the different configurations are shown in bold.

Hyperparameters β = −0.25; λ̃ = 0; λ̂ = 0 β = 0; λ̃ = 0; λ̂ = 0 β = 0.50; λ̃ = 0; λ̂ = 0

# Pre-Trained Tokens 125B 250B 375B 500B 125B 250B 375B 500B 125B 250B 375B 500B

General
Knowledge

MMLU (Acc.) 26.13 32.74 35.09 36.60 25.35 29.14 33.50 35.12 26.05 30.71 34.03 35.48
MMLU-Pro (Acc.) 9.44 10.21 11.38 12.26 8.24 10.01 11.64 12.15 8.81 11.32 10.97 11.90
NaturalQuestions (EM) 6.79 10.36 12.47 13.99 7.06 10.47 11.41 11.96 7.84 10.58 11.36 13.77
TriviaQA (EM) 20.69 29.78 35.25 37.95 19.94 29.86 33.89 37.31 20.73 29.64 35.31 39.13
Average 15.76 20.77 23.55 25.20 15.15 19.87 22.61 24.14 15.86 20.56 22.92 25.07

Commonsense
Reasoning

Hellaswag (Acc.) 52.86 59.47 61.65 63.26 53.00 59.27 62.00 63.71 53.09 59.17 61.96 63.48
SIQA (Acc.) 41.61 43.45 45.14 45.60 42.02 42.73 43.45 45.09 41.91 42.84 44.63 43.76
PIQA (Acc.) 73.45 74.32 74.76 75.68 72.74 74.59 75.52 76.71 74.10 74.92 76.55 76.88
WinoGrande (Acc.) 54.06 56.59 56.27 58.64 52.88 56.12 59.04 58.88 53.83 56.04 58.80 59.04
OpenBookQA (Acc.) 34.40 35.00 35.40 37.40 32.80 35.60 35.60 38.20 33.20 37.60 37.20 39.40
CommonsenseQA (Acc.) 20.07 34.64 44.80 51.60 22.52 33.74 35.54 43.90 21.54 32.02 37.51 43.16
Average 46.08 50.58 53.00 55.36 45.99 50.34 51.86 54.42 46.28 50.43 52.78 54.29

Knowledge Average 30.92 35.68 38.28 40.28 30.57 35.11 37.23 39.28 31.07 35.50 37.85 39.68

Logic
Reasoning

ARC-e (Acc.) 60.94 65.91 66.84 70.29 63.01 67.09 67.63 67.00 62.37 66.37 68.77 69.32
ARC-c (Acc.) 31.91 37.20 35.67 37.46 32.68 35.24 36.52 37.29 32.51 36.09 37.20 38.82
BBH (Acc.) 27.34 28.24 29.35 29.30 25.21 25.37 28.15 29.44 24.51 27.37 27.74 28.29
Average 40.06 43.78 43.95 45.68 40.30 42.57 44.10 44.58 39.80 43.28 44.57 45.48

Mathematics

GSM8K (Pass@64) 57.59 66.86 66.89 73.64 59.40 70.02 75.25 76.63 56.16 66.38 72.31 74.60
MATH-500 (Pass@64) 42.95 52.32 54.27 57.82 41.29 50.96 53.70 56.76 41.69 48.35 50.79 56.46
Minerva (Pass@64) 16.68 18.55 20.30 21.75 17.23 18.24 21.93 22.41 17.37 19.38 19.95 21.71
OlympiadBench (Pass@64) 22.26 24.79 24.54 24.58 20.53 22.27 22.77 24.31 22.04 25.70 24.86 26.52
Average 34.87 40.63 41.50 44.45 34.61 40.37 43.41 45.03 34.32 39.95 41.98 44.82

Coding
HumanEval+ (Pass@64) 20.72 29.90 34.53 34.19 19.12 28.36 30.82 34.66 19.07 26.91 32.81 33.38
MBPP+ (Pass@64) 52.05 65.95 70.15 73.34 51.01 63.64 66.74 70.16 51.40 62.94 68.06 72.47
Average 36.39 47.93 52.34 53.77 35.07 46.00 48.78 52.41 35.24 44.93 50.44 52.93

Reasoning Average 37.11 44.11 45.93 47.97 36.66 42.98 45.43 47.34 36.45 42.72 45.66 47.74

Average 34.63 40.74 42.87 44.89 34.22 39.83 42.15 44.11 34.30 39.83 42.54 44.52
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Table 6: Pre-Training performance comparison across different λ̃ and λ̂ based on 1B dense models. The
highest scores at the final checkpoint across the different configurations are shown in bold.

Hyperparameters β = 0; λ̃ = 0; λ̂ = −0.1 β = 0; λ̃ = 0; λ̂ = 0 β = 0; λ̃ = 0.1; λ̂ = 0

# Pre-Trained Tokens 125B 250B 375B 500B 125B 250B 375B 500B 125B 250B 375B 500B

General
Knowledge

MMLU (Acc.) 21.61 23.71 24.04 26.06 20.85 23.39 24.04 26.62 23.59 22.92 24.63 25.89
MMLU-Pro (Acc.) 8.34 9.32 8.42 8.67 7.63 8.23 7.98 9.02 9.04 8.69 8.50 9.23
NaturalQuestions (EM) 2.66 4.71 4.90 5.21 2.74 4.07 4.52 5.79 3.05 4.79 4.74 5.15
TriviaQA (EM) 8.61 12.70 14.95 15.59 8.65 12.63 13.53 16.25 8.76 11.18 14.08 15.50
Average 10.31 12.61 13.08 13.88 9.97 12.08 12.52 14.42 11.11 11.90 12.99 13.94

Commonsense
Reasoning

Hellaswag (Acc.) 38.61 44.06 46.40 48.17 38.96 44.42 46.26 48.33 38.87 43.72 46.67 48.26
SIQA (Acc.) 39.51 38.84 40.63 40.48 40.02 40.33 41.50 42.32 38.79 40.53 41.30 42.37
PIQA (Acc.) 66.70 69.64 70.84 70.95 67.90 69.75 71.00 71.11 67.30 69.48 71.60 71.11
WinoGrande (Acc.) 50.20 50.36 51.54 52.33 52.49 52.17 52.80 53.83 48.93 51.38 54.78 52.64
OpenBookQA (Acc.) 29.40 31.60 32.20 32.40 29.80 32.20 33.60 32.80 30.80 30.20 32.20 31.40
CommonsenseQA (Acc.) 19.49 19.08 20.39 18.92 19.57 21.79 19.82 20.07 20.64 19.00 18.84 23.34
Average 40.65 42.26 43.67 43.88 41.46 43.44 44.16 44.74 40.89 42.39 44.23 44.85

Knowledge Average 25.48 27.44 28.37 28.88 25.71 27.76 28.34 29.58 26.00 27.14 28.61 29.40

Logic
Reasoning

ARC-e (Acc.) 52.36 57.28 59.09 58.46 51.64 55.68 56.70 58.80 50.21 55.01 58.38 60.35
ARC-c (Acc.) 27.65 29.86 28.84 29.78 27.30 29.44 29.52 29.01 26.02 28.16 30.46 30.20
BBH (Acc.) 24.48 24.33 25.19 23.42 22.13 22.56 25.68 27.34 23.32 24.42 24.05 25.59
Average 34.83 37.16 37.71 37.22 33.69 35.89 37.30 38.38 33.18 35.86 37.63 38.71

Mathematics

GSM8K (Pass@64) 38.32 44.09 47.21 47.38 41.09 48.78 48.77 48.76 41.85 43.30 45.25 50.04
MATH-500 (Pass@64) 34.17 36.42 38.42 39.69 33.41 35.43 37.10 38.49 33.52 38.01 37.35 37.29
Minerva (Pass@64) 14.35 16.68 16.20 17.07 16.44 16.71 14.80 16.43 15.11 16.89 17.21 16.87
OlympiadBench (Pass@64) 20.44 22.29 21.95 23.76 21.06 21.01 21.85 21.83 21.12 21.24 20.77 21.62
Average 26.82 29.87 30.95 31.98 28.00 30.48 30.63 31.38 27.90 29.86 30.15 31.46

Coding
HumanEval+ (Pass@64) 8.13 13.04 15.12 14.69 8.71 12.15 12.72 15.95 8.84 12.34 16.91 16.39
MBPP+ (Pass@64) 19.08 30.08 38.37 43.02 20.63 34.37 37.53 41.67 19.25 32.66 40.90 41.62
Average 13.61 21.56 26.75 28.86 14.67 23.26 25.13 28.81 14.05 22.50 28.91 29.01

Reasoning Average 25.09 29.53 31.80 32.68 25.45 29.88 31.02 32.86 25.04 29.41 32.23 33.06

Average 25.24 28.69 30.43 31.16 25.56 29.03 29.95 31.55 25.43 28.50 30.78 31.59

Table 7: Pre-Training performance comparison across different λ̃ and λ̂ based on 4B dense models. The
highest scores at the final checkpoint across the different configurations are shown in bold.

Hyperparameters β = 0; λ̃ = 0; λ̂ = −0.1 β = 0; λ̃ = 0; λ̂ = 0 β = 0; λ̃ = 0.1; λ̂ = 0

# Pre-Trained Tokens 125B 250B 375B 500B 125B 250B 375B 500B 125B 250B 375B 500B

General
Knowledge

MMLU (Acc.) 23.79 30.57 33.71 34.80 25.76 29.91 33.61 36.17 23.02 31.66 33.80 35.43
MMLU-Pro (Acc.) 9.57 10.37 11.50 11.83 9.25 10.90 11.71 12.23 8.44 11.37 11.87 12.20
NaturalQuestions (EM) 6.15 9.92 11.41 11.77 5.26 9.34 10.86 12.35 6.65 9.75 10.89 12.22
TriviaQA (EM) 17.19 26.53 31.13 33.59 17.91 25.94 27.80 33.83 16.93 25.99 30.57 33.29
Average 14.18 19.35 21.94 23.00 14.89 19.13 21.00 23.61 13.41 19.59 21.78 23.32

Commonsense
Reasoning

Hellaswag (Acc.) 50.56 57.22 60.25 62.27 50.22 57.00 60.50 62.91 50.21 58.09 61.30 62.09
SIQA (Acc.) 42.17 42.48 44.11 46.98 42.37 43.35 43.65 44.73 41.40 44.52 45.39 45.29
PIQA (Acc.) 71.27 74.37 74.16 75.19 72.42 74.70 75.35 76.28 71.16 73.88 73.56 76.12
WinoGrande (Acc.) 54.62 56.43 59.04 58.88 53.67 55.80 56.67 58.72 53.91 57.54 58.25 59.91
OpenBookQA (Acc.) 34.40 38.60 38.00 37.80 33.40 36.40 37.00 36.00 32.80 35.80 36.40 37.40
CommonsenseQA (Acc.) 19.41 30.06 39.80 46.76 20.39 28.26 47.91 52.91 20.56 30.06 41.52 46.93
Average 45.41 49.86 52.56 54.65 45.41 49.25 53.51 55.26 45.01 49.98 52.74 54.62

Knowledge Average 29.79 34.60 37.25 38.82 30.15 34.19 37.26 39.44 29.21 34.79 37.26 38.97

Logic
Reasoning

ARC-e (Acc.) 59.51 65.32 68.31 68.14 60.27 63.05 67.97 67.55 60.19 67.05 68.48 67.63
ARC-c (Acc.) 31.57 35.15 36.95 37.20 30.55 33.96 36.77 37.54 31.66 35.75 38.23 37.20
BBH (Acc.) 27.38 28.08 29.15 29.15 26.54 27.42 29.53 28.29 26.22 27.15 30.32 28.80
Average 39.49 42.85 44.80 44.83 39.12 41.48 44.76 44.46 39.36 43.32 45.68 44.54

Mathematics

GSM8K (Pass@64) 46.40 59.61 62.93 70.92 48.43 60.24 68.75 71.26 48.09 58.17 61.84 70.94
MATH-500 (Pass@64) 38.86 47.09 48.23 52.47 38.19 48.15 48.88 51.54 38.16 43.83 46.77 50.45
Minerva (Pass@64) 16.60 17.99 17.90 21.27 15.09 19.22 19.68 20.63 16.67 18.06 19.47 20.54
OlympiadBench (Pass@64) 21.80 23.30 24.40 24.19 21.79 25.53 23.70 24.84 22.92 25.74 25.16 25.62
Average 30.92 37.00 38.37 42.21 30.88 38.29 40.25 42.07 31.46 36.45 38.31 41.89

Coding
HumanEval+ (Pass@64) 16.71 23.77 27.27 29.41 17.32 23.22 30.08 29.13 15.42 20.41 29.56 31.08
MBPP+ (Pass@64) 42.24 56.78 63.88 66.01 40.66 56.64 65.69 66.29 38.19 57.32 64.74 65.65
Average 29.48 40.28 45.58 47.71 28.99 39.93 47.89 47.71 26.81 38.87 47.15 48.37

Reasoning Average 33.29 40.04 42.91 44.92 33.00 39.90 44.30 44.75 32.54 39.54 43.71 44.93

Average 31.89 37.87 40.65 42.48 31.86 37.61 41.48 42.62 29.21 37.64 41.13 42.55
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Table 8: Pre-Training performance comparison across different λ̃ and λ̂ based on 5B-A0.3B MoE models.
The highest scores at the final checkpoint across the different configurations are shown in bold.

Hyperparameters β = 0; λ̃ = 0; λ̂ = −0.1 β = 0; λ̃ = 0; λ̂ = 0 β = 0; λ̃ = 0.1; λ̂ = 0

# Pre-Trained Tokens 125B 250B 375B 500B 125B 250B 375B 500B 125B 250B 375B 500B

General
Knowledge

MMLU (Acc.) 22.24 26.11 26.41 29.99 23.10 25.12 29.17 31.19 22.20 26.45 29.44 31.37
MMLU-Pro (Acc.) 7.55 8.74 8.82 10.36 9.47 8.89 10.06 11.87 8.18 9.63 10.11 11.02
NaturalQuestions (EM) 5.60 7.34 7.37 8.84 5.15 7.51 8.73 10.42 5.21 7.95 8.31 9.81
TriviaQA (EM) 14.54 21.20 25.70 27.26 14.93 22.03 25.27 28.25 15.09 21.84 25.85 28.91
Average 12.48 15.85 17.08 19.11 13.16 15.89 18.31 20.43 12.67 16.47 18.43 20.28

Commonsense
Reasoning

Hellaswag (Acc.) 48.44 53.64 56.72 57.58 48.54 54.63 56.88 57.41 48.51 53.89 56.42 57.33
SIQA (Acc.) 40.48 43.55 43.65 42.84 41.25 42.27 43.76 42.68 38.84 41.50 41.50 41.81
PIQA (Acc.) 69.48 72.96 73.39 74.37 71.27 73.18 74.43 74.76 71.55 74.43 74.43 74.92
WinoGrande (Acc.) 52.80 54.85 55.01 55.56 50.43 53.20 56.51 56.20 52.88 54.22 56.91 55.96
OpenBookQA (Acc.) 32.00 31.80 33.40 34.20 31.20 32.80 34.40 33.60 32.20 34.40 34.40 36.40
CommonsenseQA (Acc.) 19.74 23.67 20.15 30.30 18.67 22.93 28.50 35.38 20.07 24.65 27.76 31.86
Average 43.82 46.75 47.05 49.14 43.56 46.50 49.08 50.01 44.01 47.18 48.57 49.71

Knowledge Average 28.15 31.30 32.06 34.13 28.36 31.19 33.69 35.22 28.34 31.82 33.50 35.00

Logic
Reasoning

ARC-e (Acc.) 57.15 61.49 63.43 63.01 58.54 62.92 64.48 63.34 58.63 62.25 62.42 62.08
ARC-c (Acc.) 30.20 33.28 34.73 33.62 30.80 34.81 35.67 35.15 31.06 34.73 34.04 34.98
BBH (Acc.) 24.56 24.60 28.29 26.45 23.97 25.79 27.71 27.03 22.33 26.28 28.09 27.74
Average 37.30 39.79 42.15 41.03 37.77 41.17 42.62 41.84 37.34 41.09 41.52 41.60

Mathematics

GSM8K (Pass@64) 50.99 59.44 62.10 64.61 51.48 59.15 61.81 65.65 48.16 58.15 60.69 59.90
MATH-500 (Pass@64) 39.91 46.65 48.92 50.65 37.57 43.69 46.91 51.19 38.71 42.31 46.49 48.60
Minerva (Pass@64) 16.36 15.98 18.30 18.83 15.47 16.93 18.00 17.92 17.31 18.01 17.78 18.02
OlympiadBench (Pass@64) 22.16 23.01 25.23 25.54 23.50 24.14 23.40 24.42 22.62 24.02 24.57 24.19
Average 32.36 36.27 38.64 39.91 32.01 35.98 37.53 39.80 31.70 35.62 37.38 37.68

Coding
HumanEval+ (Pass@64) 14.01 22.49 27.53 27.00 17.52 22.79 26.15 29.32 15.27 21.36 24.62 27.88
MBPP+ (Pass@64) 38.32 52.88 57.44 60.50 39.81 54.29 55.93 57.77 40.39 49.00 56.04 60.17
Average 26.17 37.69 42.49 43.75 28.67 38.54 41.04 43.55 27.83 35.18 40.33 44.03

Reasoning Average 31.94 37.92 41.09 41.56 32.81 38.56 40.40 41.73 32.29 37.30 39.74 41.10

Average 30.43 35.27 37.48 38.59 31.03 35.62 37.72 39.12 30.71 35.11 37.25 38.66

Table 9: Pre-Training performance comparison across different λ̃ and λ̂ based on 10B-A0.5B MoE models.
The highest scores at the final checkpoint across the different configurations are shown in bold.

Hyperparameters β = 0; λ̃ = 0; λ̂ = −0.1 β = 0; λ̃ = 0; λ̂ = 0 β = 0; λ̃ = 0.1; λ̂ = 0

# Pre-Trained Tokens 125B 250B 375B 500B 125B 250B 375B 500B 125B 250B 375B 500B

General
Knowledge

MMLU (Acc.) 25.99 31.87 35.24 36.13 25.35 29.14 33.50 35.12 25.38 32.48 34.47 36.75
MMLU-Pro (Acc.) 9.40 11.10 12.17 13.19 8.24 10.01 11.64 12.15 8.96 11.19 12.64 12.34
NaturalQuestions (EM) 7.51 11.22 11.94 12.60 7.06 10.47 11.41 11.96 7.06 10.44 11.25 13.52
TriviaQA (EM) 20.55 29.22 33.57 37.30 19.94 29.86 33.89 37.31 21.12 29.48 33.93 37.61
Average 15.86 20.85 23.23 24.81 15.15 19.87 22.61 24.14 15.63 20.90 23.07 25.06

Commonsense
Reasoning

Hellaswag (Acc.) 52.70 59.23 63.30 63.68 53.00 59.27 62.00 63.71 53.06 59.75 63.67 63.38
SIQA (Acc.) 40.63 43.60 44.37 44.17 42.02 42.73 43.45 45.09 41.04 44.17 45.34 45.50
PIQA (Acc.) 73.23 74.92 75.90 76.22 72.74 74.59 75.52 76.71 72.42 74.70 75.52 76.50
WinoGrande (Acc.) 52.72 57.54 58.56 59.98 52.88 56.12 59.04 58.88 53.83 57.14 59.12 59.98
OpenBookQA (Acc.) 34.20 35.60 37.00 36.80 32.80 35.60 35.60 38.20 33.60 35.40 36.20 35.60
CommonsenseQA (Acc.) 21.38 37.92 44.64 48.89 22.52 33.74 35.54 43.90 19.25 34.81 41.03 45.29
Average 45.81 51.47 53.96 54.96 45.99 50.34 51.86 54.42 45.53 51.00 53.48 54.38

Knowledge Average 30.84 36.16 38.60 39.88 30.57 35.11 37.23 39.28 30.58 35.95 38.28 39.72

Logic
Reasoning

ARC-e (Acc.) 60.69 66.25 69.61 68.43 63.01 67.09 67.63 67.00 64.06 65.99 70.03 67.59
ARC-c (Acc.) 33.87 37.63 38.73 37.71 32.68 35.24 36.52 37.29 34.13 37.71 37.88 39.42
BBH (Acc.) 25.63 26.34 29.06 29.10 25.21 25.37 28.15 29.44 25.20 29.46 29.72 29.70
Average 40.06 43.41 45.80 45.08 40.30 42.57 44.10 44.58 41.13 44.39 45.88 45.57

Mathematics

GSM8K (Pass@64) 55.13 69.42 71.80 77.63 59.40 70.02 75.25 76.63 55.89 65.29 71.44 75.11
MATH-500 (Pass@64) 43.56 49.61 54.32 56.39 41.29 50.96 53.70 56.76 42.58 49.50 52.46 54.75
Minerva (Pass@64) 17.23 19.23 20.27 22.60 17.23 18.24 21.93 22.41 16.07 19.55 21.59 20.38
OlympiadBench (Pass@64) 22.90 22.84 24.30 26.67 20.53 22.27 22.77 24.31 23.23 24.28 25.25 26.15
Average 34.71 40.28 42.67 45.82 34.61 40.37 43.41 45.03 34.44 39.66 42.69 44.10

Coding
HumanEval+ (Pass@64) 21.82 29.67 32.92 35.18 19.12 28.36 30.82 34.66 19.54 25.32 30.97 32.96
MBPP+ (Pass@64) 48.31 63.41 68.98 71.01 51.01 63.64 66.74 70.16 50.24 60.62 68.22 71.02
Average 35.07 46.54 50.95 53.10 35.07 46.00 48.78 52.41 34.89 42.97 49.60 51.99

Reasoning Average 36.61 43.41 46.47 48.00 36.66 42.98 45.43 47.34 36.82 42.34 46.05 47.22

Average 34.30 40.51 43.32 44.75 34.22 39.83 42.15 44.11 34.33 39.78 42.94 44.22

16



Table 10: Mid-Training performance comparison across different β based on 4B dense models. The highest
scores at the final checkpoint across the different configurations are shown in bold.

Hyperparameters β = −0.25; λ̃ = 0; λ̂ = 0 β = 0; λ̃ = 0; λ̂ = 0 β = 0.50; λ̃ = 0; λ̂ = 0

# Mid-Trained Tokens 25B 50B 75B 100B 25B 50B 75B 100B 25B 50B 75B 100B

General
Knowledge

MMLU (Acc.) 37.99 39.51 39.69 39.92 37.27 39.34 39.23 40.47 36.53 38.45 39.00 39.48
MMLU-Pro (Acc.) 16.51 18.44 19.69 19.70 15.50 17.27 17.77 18.68 14.97 16.44 17.99 18.53
NaturalQuestions (EM) 11.69 11.75 12.16 12.33 12.16 11.91 12.33 12.55 11.75 11.14 12.08 11.88
TriviaQA (EM) 32.60 32.75 34.05 34.50 31.90 32.54 33.50 34.17 32.55 32.78 34.09 34.67
Average 24.70 25.61 26.40 26.61 24.21 25.27 25.71 26.47 23.95 24.70 25.79 26.14

Commonsense
Reasoning

Hellaswag (Acc.) 61.59 61.70 61.95 62.41 61.25 61.72 62.14 62.09 61.68 62.01 62.54 62.51
SIQA (Acc.) 44.78 43.71 44.42 44.78 45.44 45.29 45.75 45.85 44.32 44.78 44.83 44.88
PIQA (Acc.) 75.24 76.01 75.19 75.84 75.24 75.24 75.24 75.73 74.54 74.92 74.81 74.92
WinoGrande (Acc.) 60.69 59.67 60.22 60.62 58.96 59.98 60.46 60.85 58.88 59.35 59.51 59.67
OpenBookQA (Acc.) 35.60 38.20 37.20 37.40 36.60 37.40 38.00 37.40 39.20 40.40 40.60 40.00
CommonsenseQA (Acc.) 52.09 52.42 54.38 55.77 54.13 52.99 53.97 54.87 49.14 50.04 52.58 53.07
Average 55.00 55.29 55.56 56.14 55.27 55.44 55.93 56.13 54.63 55.25 55.81 55.84

Knowledge Average 39.85 40.45 40.98 41.37 39.74 40.35 40.82 41.30 39.29 39.98 40.80 40.99

Logic
Reasoning

ARC-e (Acc.) 66.84 68.94 70.45 69.82 68.81 68.94 69.82 69.99 66.84 69.19 69.91 71.17
ARC-c (Acc.) 39.33 41.04 40.78 41.89 40.61 41.13 41.64 41.89 38.14 41.38 40.87 41.72
BBH (Acc.) 33.90 38.58 39.66 39.83 33.47 36.95 36.45 37.28 31.90 34.88 36.11 35.92
Average 46.69 49.52 50.30 50.51 47.63 49.01 49.30 49.72 45.63 48.48 48.96 49.60

Mathematics

GSM8K (Pass@64) 84.66 88.94 91.17 91.25 85.73 89.60 92.23 92.70 83.30 88.82 91.75 92.08
MATH-500 (Pass@64) 63.69 66.70 70.73 70.41 62.42 66.14 69.48 71.35 62.42 65.49 68.17 68.97
Minerva (Pass@64) 21.88 23.67 26.82 25.99 24.70 24.38 28.22 26.72 22.86 23.90 23.95 24.99
OlympiadBench (Pass@64) 28.96 30.15 32.15 32.21 28.44 33.15 32.96 32.65 29.21 29.80 31.51 32.85
Average 49.80 52.37 55.22 54.97 50.32 53.32 55.72 55.86 49.45 52.00 53.85 54.72

Coding
HumanEval+ (Pass@64) 52.37 57.74 64.85 64.33 51.64 60.52 64.95 65.89 48.07 60.60 63.31 66.30
MBPP+ (Pass@64) 79.91 82.27 85.48 86.79 77.50 82.32 84.81 85.28 77.83 82.51 83.77 83.41
Average 66.74 70.01 75.17 75.56 64.57 71.42 74.88 75.59 62.95 71.56 73.54 74.86

Reasoning Average 54.21 57.30 60.23 60.35 54.17 57.91 59.97 60.39 52.67 57.35 58.78 59.73

Average 48.46 50.56 52.53 52.76 48.40 50.89 52.31 52.75 47.32 50.40 51.59 52.23

Table 11: Mid-Training performance comparison across different β based on 10B-A0.5B MoE models. The
highest scores at the final checkpoint across the different configurations are shown in bold.

Hyperparameters β = −0.25; λ̃ = 0; λ̂ = 0 β = 0; λ̃ = 0; λ̂ = 0 β = 0.50; λ̃ = 0; λ̂ = 0

# Mid-Trained Tokens 25B 50B 75B 100B 25B 50B 75B 100B 25B 50B 75B 100B

General
Knowledge

MMLU (Acc.) 36.39 37.23 37.75 38.11 36.15 37.27 37.54 37.82 35.04 36.49 36.45 37.10
MMLU-Pro (Acc.) 12.31 12.88 13.69 13.91 12.98 13.91 14.41 14.71 12.03 12.82 13.32 13.46
NaturalQuestions (EM) 12.80 13.77 14.18 14.35 11.30 12.11 12.44 12.85 11.30 12.11 12.44 12.85
TriviaQA (EM) 36.61 37.37 38.29 38.76 35.84 37.15 37.81 38.38 37.57 38.84 39.62 40.21
Average 24.53 25.31 25.98 26.28 24.07 25.11 25.55 25.94 24.40 25.41 25.87 26.18

Commonsense
Reasoning

Hellaswag (Acc.) 62.25 62.39 62.94 63.25 62.47 62.82 63.50 63.74 62.51 62.67 63.29 63.43
SIQA (Acc.) 43.86 44.63 44.68 45.19 45.55 43.04 43.70 44.22 44.63 44.01 44.73 44.01
PIQA (Acc.) 75.46 74.92 75.57 75.95 76.06 75.63 75.73 76.55 75.90 76.06 76.50 76.82
WinoGrande (Acc.) 58.80 59.98 60.54 60.46 58.96 58.88 59.59 59.83 58.64 59.51 60.77 60.30
OpenBookQA (Acc.) 37.40 36.80 37.60 38.00 36.60 37.20 37.00 37.20 40.00 40.40 40.20 40.60
CommonsenseQA (Acc.) 50.53 50.45 50.61 50.61 43.90 46.52 49.06 49.06 40.46 42.75 43.73 43.90
Average 54.72 54.86 55.32 55.58 53.92 54.02 54.76 55.10 53.69 54.23 54.87 54.84

Knowledge Average 39.62 40.09 40.65 40.93 39.00 39.56 40.16 40.52 39.04 39.82 40.37 40.51

Logic
Reasoning

ARC-e (Acc.) 68.35 68.90 69.40 70.12 68.35 68.90 69.40 70.12 68.52 70.03 69.87 70.24
ARC-c (Acc.) 38.65 40.10 41.30 40.53 39.59 40.44 42.49 42.83 39.93 40.87 41.64 41.98
BBH (Acc.) 30.70 31.64 31.84 32.05 30.64 33.68 33.59 34.14 30.69 32.42 33.25 33.44
Average 45.90 46.88 47.51 47.57 46.40 48.30 48.91 49.27 46.38 47.77 48.25 48.55

Mathematics

GSM8K (Pass@64) 85.06 87.67 90.35 90.53 87.16 90.68 90.83 92.03 84.62 88.39 89.84 90.30
MATH-500 (Pass@64) 65.20 68.85 70.19 71.73 64.39 68.35 70.77 70.97 64.27 68.59 67.46 70.00
Minerva (Pass@64) 25.33 25.02 26.26 26.53 24.51 23.83 24.77 27.03 23.51 26.76 27.11 25.90
OlympiadBench (Pass@64) 29.73 30.76 32.84 33.21 28.91 30.05 33.11 32.63 28.57 29.86 32.82 33.39
Average 51.33 53.08 54.91 55.50 51.24 53.23 54.87 55.67 50.24 53.40 54.31 54.90

Coding
HumanEval+ (Pass@64) 48.79 55.88 56.24 58.05 48.00 53.35 56.98 55.18 49.33 53.14 55.06 56.21
MBPP+ (Pass@64) 77.31 80.74 84.55 83.41 76.28 80.29 81.82 81.38 76.03 78.12 80.15 80.80
Average 63.05 68.31 70.40 70.73 62.14 66.82 69.40 68.28 62.68 65.63 67.61 68.51

Reasoning Average 53.43 56.09 57.61 57.93 53.26 56.12 57.73 57.74 53.10 55.60 56.72 57.32

Average 47.90 49.69 50.82 51.13 47.56 49.50 50.70 50.85 47.48 49.29 50.18 50.60
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Table 12: Mid-Training performance comparison across different λ̃ and λ̂ based on 4B dense models. The
highest scores at the final checkpoint across the different configurations are shown in bold.

Hyperparameters β = 0; λ̃ = 0; λ̂ = −0.1 β = 0; λ̃ = 0; λ̂ = 0 β = 0; λ̃ = 0.1; λ̂ = 0

# Mid-Trained Tokens 25B 50B 75B 100B 25B 50B 75B 100B 25B 50B 75B 100B

General
Knowledge

MMLU (Acc.) 37.33 38.73 38.83 39.13 37.27 39.34 39.23 40.47 37.15 38.06 38.76 39.43
MMLU-Pro (Acc.) 14.17 16.61 17.57 18.23 15.50 17.27 17.77 18.68 14.17 15.58 16.41 17.50
NaturalQuestions (EM) 11.25 11.99 12.30 12.66 12.16 11.91 12.33 12.55 11.14 12.49 12.58 12.74
TriviaQA (EM) 33.29 33.89 34.80 35.32 31.90 32.54 33.50 34.17 32.73 33.50 34.17 34.59
Average 24.01 25.31 25.88 26.34 24.21 25.27 25.71 26.47 23.80 24.91 25.48 26.07

Commonsense
Reasoning

Hellaswag (Acc.) 61.11 61.25 61.76 62.29 61.25 61.72 62.14 62.09 61.59 61.46 61.98 62.16
SIQA (Acc.) 45.09 44.37 44.06 45.24 45.44 45.29 45.75 45.85 46.21 46.21 46.37 46.62
PIQA (Acc.) 75.46 76.01 76.22 76.12 75.24 75.24 75.24 75.73 74.59 74.76 75.41 75.41
WinoGrande (Acc.) 60.22 60.22 61.48 60.46 58.96 59.98 60.46 60.85 60.85 60.14 59.51 59.98
OpenBookQA (Acc.) 39.80 38.20 38.20 38.00 36.60 37.40 38.00 37.40 39.80 38.60 39.60 40.20
CommonsenseQA (Acc.) 46.93 51.84 53.73 53.81 54.13 52.99 53.97 54.87 45.86 47.67 49.80 50.20
Average 54.77 55.32 55.91 55.99 55.27 55.44 55.93 56.13 54.82 54.81 55.45 55.76

Knowledge Average 39.39 40.31 40.89 41.16 39.74 40.35 40.82 41.30 39.31 39.86 40.46 40.91

Logic
Reasoning

ARC-e (Acc.) 68.52 68.56 70.75 71.34 68.81 68.94 69.82 69.99 70.33 70.29 71.04 71.25
ARC-c (Acc.) 39.93 40.96 41.81 42.66 40.61 41.13 41.64 41.89 41.30 42.15 42.24 43.34
BBH (Acc.) 32.78 37.15 38.49 39.30 33.47 36.95 36.45 37.28 33.62 35.40 36.58 37.74
Average 47.08 48.89 50.35 51.10 47.63 49.01 49.30 49.72 48.42 49.28 49.95 50.78

Mathematics

GSM8K (Pass@64) 84.38 89.90 90.43 91.69 85.73 89.60 92.23 92.70 85.99 87.51 90.68 90.11
MATH-500 (Pass@64) 64.40 70.24 72.50 72.78 62.42 66.14 69.48 71.35 63.31 67.35 70.36 70.31
Minerva (Pass@64) 21.64 23.81 25.65 26.86 24.70 24.38 28.22 26.72 23.28 22.60 25.53 25.43
OlympiadBench (Pass@64) 30.09 32.29 33.52 34.13 28.44 33.15 32.96 32.65 26.32 28.90 30.55 34.11
Average 50.13 54.06 55.53 56.37 50.32 53.32 55.72 55.86 49.73 51.59 54.28 54.99

Coding
HumanEval+ (Pass@64) 50.62 58.51 64.58 65.23 51.64 60.52 64.95 65.89 51.68 58.17 63.94 65.31
MBPP+ (Pass@64) 78.24 83.29 85.36 85.22 77.50 82.32 84.81 85.28 79.31 81.59 85.17 85.23
Average 64.43 70.90 74.97 75.23 64.57 71.42 74.88 75.59 65.50 69.88 74.56 75.27

Reasoning Average 53.88 57.95 60.28 60.90 54.17 57.91 59.97 60.39 54.55 56.92 59.60 60.35

Average 48.08 50.89 52.53 53.00 48.40 50.89 52.31 52.75 48.45 50.09 51.94 52.57

Table 13: Mid-Training performance comparison across different λ̃ and λ̂ based on 10B-A0.5B MoE models.
The highest scores at the final checkpoint across the different configurations are shown in bold.

Hyperparameters β = 0; λ̃ = 0; λ̂ = −0.1 β = 0; λ̃ = 0; λ̂ = 0 β = 0; λ̃ = 0.1; λ̂ = 0

# Mid-Trained Tokens 25B 50B 75B 100B 25B 50B 75B 100B 25B 50B 75B 100B

General
Knowledge

MMLU (Acc.) 36.86 38.22 38.98 39.07 36.15 37.27 37.54 37.82 36.90 37.96 38.29 39.30
MMLU-Pro (Acc.) 14.10 15.20 15.93 16.39 12.98 13.91 14.41 14.71 13.02 15.05 14.67 14.72
NaturalQuestions (EM) 12.35 13.05 13.63 13.60 11.30 12.11 12.44 12.85 12.52 12.63 13.30 13.49
TriviaQA (EM) 35.51 37.14 37.49 38.25 35.84 37.15 37.81 38.38 36.25 36.98 38.01 38.44
Average 24.71 25.90 26.51 26.83 24.07 25.11 25.55 25.94 24.67 25.66 26.07 26.49

Commonsense
Reasoning

Hellaswag (Acc.) 62.67 62.96 63.12 63.50 62.47 62.82 63.50 63.74 62.93 63.07 63.42 63.73
SIQA (Acc.) 43.86 43.96 43.71 43.71 45.55 43.04 43.70 44.22 45.34 45.50 45.91 45.45
PIQA (Acc.) 76.01 75.41 75.95 76.22 76.06 75.63 75.73 76.55 76.01 75.73 76.17 76.12
WinoGrande (Acc.) 60.06 61.09 60.77 58.88 60.06 61.09 60.77 58.88 58.56 59.59 60.46 61.01
OpenBookQA (Acc.) 37.60 35.80 36.00 35.40 36.60 37.20 37.00 37.20 37.20 35.80 37.00 37.80
CommonsenseQA (Acc.) 45.62 48.89 45.86 48.48 43.90 46.52 49.06 49.06 45.45 47.83 47.91 49.63
Average 54.30 54.69 54.24 54.37 53.92 54.02 54.76 55.10 54.25 54.59 55.15 55.62

Knowledge Average 39.50 40.29 40.37 40.60 39.00 39.56 40.16 40.52 39.46 40.12 40.61 41.06

Logic
Reasoning

ARC-e (Acc.) 69.78 69.78 70.58 71.09 68.98 70.79 70.66 70.83 68.48 69.95 70.56 71.13
ARC-c (Acc.) 40.10 41.21 41.81 41.30 39.59 40.44 42.49 42.83 41.64 42.41 41.81 42.06
BBH (Acc.) 31.18 33.21 33.71 34.05 30.64 33.68 33.59 34.14 30.70 33.19 32.64 32.73
Average 47.02 48.07 48.70 48.81 46.40 48.30 48.91 49.27 46.94 48.52 48.34 48.64

Mathematics

GSM8K (Pass@64) 87.23 90.34 91.10 91.45 87.16 90.68 90.83 92.03 84.20 87.47 89.89 90.41
MATH-500 (Pass@64) 64.74 69.10 71.01 70.77 64.39 68.35 70.77 70.97 63.07 65.99 69.52 69.96
Minerva (Pass@64) 24.50 25.23 25.50 26.67 24.51 23.83 24.77 27.03 23.05 26.98 27.02 27.41
OlympiadBench (Pass@64) 28.84 30.41 31.34 31.20 28.91 30.05 33.11 32.63 31.11 32.09 32.57 32.83
Average 51.33 53.77 54.74 55.02 51.24 53.23 54.87 55.67 50.36 53.13 54.75 55.15

Coding
HumanEval+ (Pass@64) 47.08 50.89 52.11 55.14 48.00 53.35 56.98 55.18 47.36 51.56 55.66 55.62
MBPP+ (Pass@64) 78.67 79.80 81.25 84.00 76.28 80.29 81.82 81.38 76.24 80.35 82.42 83.16
Average 62.88 65.35 66.68 69.57 62.14 66.82 69.40 68.28 61.80 65.96 69.04 69.39

Reasoning Average 53.74 55.73 56.71 57.80 53.26 56.12 57.73 57.74 53.03 55.87 57.38 57.73

Average 48.05 49.55 50.17 50.92 47.56 49.50 50.70 50.85 47.60 49.57 50.67 51.06
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Table 14: RL performance of the 4B Dense Model with β = 0; λ̃ = 0; λ̂ = 0.

# RL Steps 100 200 300 400 500 600 700 800 900 1000

AIME24
Avg@128 0.89 0.81 1.14 1.04 1.12 1.54 1.33 1.69 1.64 1.62
Cons@128 0.00 0.00 0.00 0.00 3.33 3.33 3.33 6.67 3.33 3.33
Pass@64 15.34 13.77 21.27 14.80 11.68 22.86 19.81 19.68 14.78 18.32

AIME25
Avg@128 0.57 0.86 0.86 1.46 1.59 2.29 1.30 2.06 2.21 2.24
Cons@128 0.00 0.00 0.00 3.33 0.00 6.67 3.33 3.33 3.33 3.33
Pass@64 14.90 11.67 10.84 10.00 16.16 10.84 12.93 14.35 10.84 14.59

AMC23
Avg@128 18.46 23.07 24.94 27.87 28.96 28.73 27.17 28.18 29.16 29.51
Cons@128 37.50 35.00 40.00 47.50 45.00 45.00 45.00 45.00 47.50 45.00
Pass@64 71.39 76.75 79.44 75.70 74.24 72.45 67.17 77.07 78.26 77.43

OlympiadBench
Avg@128 14.53 17.94 19.98 21.45 22.31 22.28 22.04 23.67 24.64 24.56
Cons@128 23.41 26.22 27.11 28.00 28.44 29.63 29.48 32.00 33.04 33.78
Pass@64 55.45 55.01 56.70 56.49 55.80 55.84 55.45 56.73 57.57 58.09

MATH-500
Avg@128 39.85 45.48 48.23 50.56 51.41 51.10 49.87 51.22 52.20 52.26
Cons@128 56.80 60.60 62.60 62.00 61.60 62.40 61.80 62.60 65.40 64.60
Pass@64 87.63 87.16 87.38 88.36 88.88 88.81 88.82 89.49 90.18 89.95

Minerva
Avg@128 9.11 10.52 11.19 11.99 12.52 12.36 12.93 13.26 12.43 12.75
Cons@128 17.65 17.28 18.38 17.64 19.12 19.49 18.01 20.59 19.12 19.49
Pass@64 44.54 45.07 47.02 44.85 43.97 45.29 48.84 48.53 47.36 47.55

Avg@128 13.90 16.45 17.72 19.06 19.65 19.72 19.11 20.01 20.38 20.49
Average Cons@128 22.56 23.18 24.68 26.41 26.25 27.75 26.83 28.37 28.62 28.26

Pass@64 48.21 48.24 50.44 48.37 48.46 49.35 48.84 50.98 49.83 50.99

Table 15: RL performance of the 10B-A0.5B MoE Model with β = 0; λ̃ = 0; λ̂ = 0.

# RL Steps 100 200 300 400 500 600 700 800 900 1000

AIME24
Avg@128 0.34 0.47 0.34 0.44 0.63 0.57 0.55 0.55 0.65 0.65
Cons@128 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.33 0.00 0.00
Pass@64 12.88 12.94 11.42 11.68 12.93 11.47 9.59 9.17 10.00 10.84

AIME25
Avg@128 0.13 0.23 0.16 0.29 0.36 0.47 0.60 0.44 0.63 0.57
Cons@128 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Pass@64 6.68 11.27 8.35 14.80 16.58 19.10 18.67 14.10 16.66 16.59

AMC23
Avg@128 10.64 11.82 11.95 13.07 14.26 16.11 16.21 17.79 18.38 19.06
Cons@128 20.00 25.00 17.50 27.50 25.00 30.00 27.50 35.00 32.50 37.50
Pass@64 75.83 76.02 70.67 71.55 73.75 74.33 73.13 73.22 71.65 73.71

OlympiadBench
Avg@128 7.13 8.32 9.22 10.66 11.83 12.45 12.60 13.50 14.41 15.03
Cons@128 14.81 16.00 17.04 20.00 21.04 21.33 21.19 22.52 24.30 24.89
Pass@64 49.58 49.53 52.16 52.06 52.69 52.50 53.48 53.34 52.67 53.31

MATH-500
Avg@128 26.71 28.91 32.72 34.81 36.45 37.67 38.47 39.60 41.38 42.19
Cons@128 45.60 48.40 49.80 52.40 54.40 54.40 55.20 56.20 58.20 58.20
Pass@64 82.96 82.71 83.72 83.39 85.93 85.79 85.64 86.01 86.04 85.75

Minerva
Avg@128 5.66 5.70 6.42 6.93 7.22 7.84 7.98 8.28 8.36 8.73
Cons@128 9.93 10.66 11.40 12.50 11.40 13.24 12.87 12.50 12.50 13.97
Pass@64 42.39 40.93 41.04 42.75 43.47 42.89 44.35 44.50 40.90 44.90

Avg@128 8.44 9.24 10.14 11.03 11.79 12.52 12.74 13.36 13.97 14.37
Average Cons@128 15.06 16.68 15.96 18.73 18.64 19.83 19.46 21.59 21.25 22.43

Pass@64 45.05 45.57 44.56 46.04 47.56 47.68 47.48 46.72 46.32 47.52
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Table 16: RL performance of the 4B Dense Model with β = −0.25; λ̃ = 0; λ̂ = 0.

# RL Steps 100 200 300 400 500 600 700 800 900 1000

AIME24
Avg@128 0.76 0.96 1.02 0.55 1.09 1.43 1.82 2.03 2.47 2.57
Cons@128 0.00 3.33 3.33 0.00 0.00 3.33 3.33 6.67 6.67 6.67
Pass@64 14.17 17.11 13.31 12.10 17.09 19.99 20.64 19.17 24.12 20.34

AIME25
Avg@128 0.83 1.46 2.11 1.72 2.27 2.11 1.98 2.19 2.40 2.63
Cons@128 0.00 0.00 3.33 3.33 3.33 3.33 3.33 3.33 6.67 3.33
Pass@64 17.46 13.33 21.90 19.12 19.99 15.64 14.15 16.51 11.67 15.82

AMC23
Avg@128 19.55 25.47 29.08 30.96 31.70 31.72 32.38 32.85 33.01 33.09
Cons@128 32.50 40.00 40.00 45.00 45.00 50.00 50.00 45.00 50.00 50.00
Pass@64 72.21 79.29 75.65 74.33 72.62 72.48 70.62 71.24 76.36 74.00

OlympiadBench
Avg@128 14.44 17.77 19.71 20.38 21.52 21.44 22.98 23.33 23.52 23.67
Cons@128 24.89 26.52 28.44 28.15 28.59 28.89 31.26 30.81 31.11 31.26
Pass@64 54.46 56.71 57.38 55.02 58.18 55.17 57.97 57.45 56.56 57.23

MATH-500
Avg@128 39.36 45.23 48.29 49.88 50.59 50.72 52.33 52.50 53.09 52.98
Cons@128 58.00 60.40 62.00 60.80 63.20 62.40 62.20 61.60 61.80 62.20
Pass@64 87.37 87.68 88.34 88.53 88.89 89.18 89.02 88.82 89.21 89.94

Minerva
Avg@128 9.23 10.71 11.16 12.03 12.14 12.22 12.97 12.73 12.99 13.11
Cons@128 18.39 18.38 18.75 17.65 18.75 18.38 20.96 18.75 18.38 19.49
Pass@64 43.57 46.44 46.34 46.35 46.30 45.61 47.17 45.57 46.61 45.22

Avg@128 14.03 16.93 18.56 19.25 19.89 19.94 20.74 20.94 21.25 21.34
Average Cons@128 22.30 24.77 25.98 25.82 26.48 27.72 28.51 27.69 29.11 28.83

Pass@64 48.21 50.09 50.49 49.24 50.51 49.68 49.93 49.79 50.76 50.43

Table 17: RL performance of the 4B Dense Model with β = 0.50; λ̃ = 0; λ̂ = 0.

# RL Steps 100 200 300 400 500 600 700 800 900 1000

AIME24
Avg@128 0.94 1.38 1.43 1.46 2.29 1.95 1.74 2.19 2.53 2.42
Cons@128 3.33 3.33 3.33 3.33 6.67 3.33 3.33 3.33 3.33 3.33
Pass@64 18.77 23.78 16.58 20.87 23.65 19.99 18.98 24.56 23.62 22.08

AIME25
Avg@128 0.83 1.88 1.95 2.03 3.39 3.57 2.76 3.67 4.14 4.66
Cons@128 0.00 6.67 3.33 3.33 10.00 10.00 3.33 6.67 10.00 10.00
Pass@64 17.05 15.84 17.51 13.33 15.00 19.59 15.84 20.01 18.77 15.00

AMC23
Avg@128 19.34 22.52 23.09 26.35 26.60 25.46 28.28 29.45 29.49 30.10
Cons@128 32.50 37.50 37.50 40.00 45.00 42.50 37.50 40.00 42.50 42.50
Pass@64 76.20 73.68 75.33 71.56 72.32 74.94 68.79 71.99 73.76 73.35

OlympiadBench
Avg@128 14.37 18.07 20.35 21.00 22.38 22.27 22.24 23.32 24.44 24.96
Cons@128 23.56 26.22 28.15 28.59 30.37 29.93 29.33 30.81 31.85 32.00
Pass@64 54.84 57.02 57.95 56.39 57.25 58.01 55.62 57.67 57.93 56.91

MATH-500
Avg@128 39.40 45.70 48.18 49.46 50.41 50.58 51.53 52.32 53.20 54.00
Cons@128 56.00 59.40 61.80 60.20 61.40 61.80 60.20 62.20 62.40 63.20
Pass@64 85.72 87.81 88.00 88.72 88.92 89.49 88.58 88.58 89.39 89.76

Minerva
Avg@128 8.50 10.44 11.41 11.34 11.96 11.67 11.73 11.71 12.23 12.10
Cons@128 16.91 16.91 17.65 18.01 18.01 16.91 16.54 15.44 15.44 16.18
Pass@64 42.52 45.32 44.50 43.82 44.10 43.17 41.51 45.40 46.06 43.45

Avg@128 13.90 16.67 17.74 18.61 19.51 19.25 19.71 20.44 21.01 21.37
Average Cons@128 22.05 25.01 25.29 25.58 28.58 27.41 25.04 26.41 27.59 27.87

Pass@64 49.18 50.58 49.98 49.12 50.21 50.87 48.22 51.37 51.59 50.09
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Table 18: RL performance of the 10B-A0.5B MoE Model with β = −0.25; λ̃ = 0; λ̂ = 0.

# RL Steps 100 200 300 400 500 600 700 800 900 1000

AIME24
Avg@128 0.29 0.49 0.86 0.49 0.49 0.86 0.86 0.78 0.86 1.15
Cons@128 0.00 0.00 3.33 0.00 0.00 3.33 0.00 3.33 0.00 3.33
Pass@64 9.15 7.93 8.13 10.84 11.68 14.17 14.59 19.19 15.01 21.27

AIME25
Avg@128 0.16 0.29 0.36 0.36 0.63 0.63 0.89 0.70 0.81 1.04
Cons@128 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Pass@64 8.35 13.78 15.46 7.92 19.81 17.11 19.20 13.12 14.17 17.21

AMC23
Avg@128 11.52 14.02 16.88 18.48 19.47 21.05 22.44 22.66 21.25 22.40
Cons@128 30.00 35.00 37.50 37.50 37.50 32.50 35.00 35.00 32.50 30.00
Pass@64 75.75 73.72 73.54 76.83 74.15 70.35 71.18 74.50 74.13 78.66

OlympiadBench
Avg@128 7.08 9.60 11.51 12.79 14.47 15.71 16.85 16.02 16.78 17.68
Cons@128 13.33 17.78 20.59 20.89 21.93 24.59 24.15 24.00 25.19 26.96
Pass@64 47.16 49.12 52.08 51.30 50.62 52.86 53.15 52.78 54.66 55.99

MATH-500
Avg@128 24.43 30.21 34.68 37.65 40.62 42.61 44.71 45.35 44.40 44.86
Cons@128 45.60 48.60 52.60 54.20 54.20 56.20 57.80 59.40 57.00 58.00
Pass@64 81.19 83.88 85.36 84.99 85.75 86.98 88.10 87.39 87.16 86.89

Minerva
Avg@128 5.26 6.36 7.45 8.24 9.02 9.89 10.29 10.48 10.14 9.96
Cons@128 10.29 13.24 13.24 13.24 15.07 15.07 15.81 15.81 16.18 16.91
Pass@64 38.70 41.40 43.51 44.46 43.11 45.72 45.94 45.16 45.82 44.46

Avg@128 8.12 10.16 11.96 13.00 14.12 15.13 16.01 16.00 15.71 16.18
Average Cons@128 16.54 19.10 21.21 20.97 21.45 21.95 22.13 22.92 21.81 22.53

Pass@64 43.38 44.97 46.35 46.06 47.52 47.87 48.69 48.69 48.49 50.75

Table 19: RL performance of the 10B-A0.5B MoE Model with β = 0.50; λ̃ = 0; λ̂ = 0.

# RL Steps 100 200 300 400 500 600 700 800 900 1000

AIME24
Avg@128 0.42 0.29 0.65 0.70 0.68 0.78 0.68 1.02 0.94 1.04
Cons@128 0.00 0.00 3.33 3.33 0.00 3.33 0.00 3.33 3.33 3.33
Pass@64 18.31 8.32 16.69 19.19 18.77 14.17 12.51 17.53 20.66 16.58

AIME25
Avg@128 0.26 0.16 0.18 0.34 0.26 0.36 0.29 0.26 0.34 0.68
Cons@128 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Pass@64 14.19 9.17 10.01 14.41 13.77 14.97 12.11 11.06 13.67 19.02

AMC23
Avg@128 11.17 13.46 13.54 14.14 15.90 17.27 16.15 17.60 18.42 19.67
Cons@128 17.50 25.00 22.50 25.00 25.00 30.00 27.50 30.00 32.50 32.50
Pass@64 70.56 72.46 71.53 78.57 76.84 78.90 79.26 74.73 78.60 77.41

OlympiadBench
Avg@128 7.14 8.17 9.46 10.45 11.60 12.76 12.15 13.38 14.04 15.17
Cons@128 14.81 15.56 16.59 19.11 20.44 21.63 20.44 21.78 22.81 25.19
Pass@64 47.23 50.58 51.54 51.79 52.53 51.78 52.20 52.60 53.27 52.94

MATH-500
Avg@128 27.15 30.51 33.40 34.80 36.67 38.32 36.86 39.42 40.66 41.36
Cons@128 44.40 47.40 47.80 50.60 52.00 52.80 52.20 55.00 55.60 57.00
Pass@64 81.18 82.20 82.85 83.56 84.79 84.78 85.65 86.00 85.97 86.24

Minerva
Avg@128 5.86 5.92 6.83 7.01 7.51 8.13 7.94 8.38 8.80 9.01
Cons@128 11.40 10.66 11.76 11.03 12.13 12.13 12.50 13.97 13.60 16.91
Pass@64 41.33 42.59 43.28 42.82 44.07 44.88 44.56 44.13 46.17 45.37

Avg@128 8.67 9.75 10.68 11.24 12.10 12.94 12.35 13.34 13.87 14.49
Average Cons@128 14.69 16.44 17.00 18.18 18.26 19.98 18.77 20.68 21.31 22.49

Pass@64 45.47 44.22 45.98 48.39 48.46 48.25 47.72 47.68 49.72 49.59
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Table 20: RL performance of the 4B Dense Model with β = 0; λ̃ = 0; λ̂ = −0.1.

# RL Steps 100 200 300 400 500 600 700 800 900 1000

AIME24
Avg@128 0.70 0.70 0.76 0.89 1.07 0.81 0.86 1.15 1.38 1.46
Cons@128 0.00 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33
Pass@64 22.51 12.51 15.01 14.19 13.77 15.01 20.87 21.03 22.93 23.70

AIME25
Avg@128 0.76 1.09 1.46 1.90 1.67 2.32 2.11 3.02 3.72 3.18
Cons@128 0.00 0.00 0.00 3.33 3.33 6.67 3.33 3.33 6.67 3.33
Pass@64 13.97 15.85 17.50 19.59 18.29 16.68 15.00 21.90 23.58 18.33

AMC23
Avg@128 18.50 20.76 21.84 24.67 21.82 25.35 27.55 28.73 30.47 31.13
Cons@128 37.50 40.00 37.50 40.00 40.00 37.50 37.50 42.50 42.50 45.00
Pass@64 76.21 78.48 79.17 73.11 69.87 77.31 72.07 75.05 73.18 77.07

OlympiadBench
Avg@128 13.79 15.29 17.63 19.50 18.03 19.51 20.84 22.23 23.58 24.72
Cons@128 22.22 24.30 25.04 26.81 27.11 27.41 27.41 29.63 29.78 31.70
Pass@64 54.56 56.07 55.14 55.54 56.67 56.07 55.65 56.93 57.90 56.66

MATH-500
Avg@128 37.92 40.85 43.98 45.69 43.78 46.94 48.87 50.44 51.11 53.30
Cons@128 56.20 58.20 59.00 59.00 59.80 59.60 61.80 63.00 64.00 65.00
Pass@64 86.56 87.15 87.23 87.95 87.60 87.54 87.25 88.08 89.22 89.02

Minerva
Avg@128 8.07 9.22 10.25 11.08 10.67 11.43 12.28 12.54 12.24 13.13
Cons@128 17.28 18.01 15.07 15.81 17.28 16.18 16.54 18.01 18.38 18.38
Pass@64 41.61 45.66 46.22 43.84 43.71 44.43 44.29 43.08 41.96 42.28

Avg@128 13.29 14.65 15.99 17.29 16.17 17.73 18.75 19.69 20.42 21.25
Average Cons@128 22.20 23.97 23.32 24.71 25.14 25.12 24.99 26.63 27.44 27.79

Pass@64 49.24 49.29 50.05 49.04 48.32 49.51 49.19 51.01 51.46 51.18

Table 21: RL performance of the 4B Dense Model with β = 0; λ̃ = 0.1; λ̂ = 0.

# RL Steps 100 200 300 400 500 600 700 800 900 1000

AIME24
Avg@128 0.49 0.55 0.91 0.73 0.68 0.63 0.68 0.76 0.91 1.28
Cons@128 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.33
Pass@64 9.17 13.24 23.37 8.13 18.97 17.10 20.65 17.94 16.37 20.32

AIME25
Avg@128 0.68 0.83 1.35 1.46 1.28 1.25 1.51 1.93 2.29 2.29
Cons@128 0.00 0.00 3.33 3.33 3.33 3.33 3.33 3.33 3.33 6.67
Pass@64 21.79 22.09 17.83 20.01 16.61 15.81 17.48 15.84 16.26 15.00

AMC23
Avg@128 18.24 20.59 24.16 25.16 23.89 28.38 29.20 29.57 31.43 32.68
Cons@128 32.50 32.50 42.50 35.00 42.50 42.50 42.50 37.50 45.00 45.00
Pass@64 75.30 71.98 75.55 77.70 70.73 71.66 72.38 72.02 75.16 74.30

OlympiadBench
Avg@128 13.38 16.45 18.73 19.53 19.28 21.67 21.92 22.44 23.38 24.35
Cons@128 22.96 25.48 27.56 27.70 27.11 29.48 29.33 29.93 31.41 32.00
Pass@64 54.04 55.12 55.80 56.96 56.31 55.42 57.13 56.75 57.94 57.64

MATH-500
Avg@128 37.71 43.26 47.34 48.65 48.09 51.15 51.84 52.49 53.79 54.85
Cons@128 56.00 58.80 62.20 63.20 63.60 63.80 62.80 64.80 64.60 65.40
Pass@64 84.83 87.11 88.42 88.69 87.97 87.80 87.65 88.55 88.98 88.76

Minerva
Avg@128 8.00 9.30 10.37 10.83 11.03 11.39 11.47 11.51 11.70 11.66
Cons@128 14.71 16.54 16.91 18.38 16.91 16.91 16.54 18.01 16.54 15.81
Pass@64 41.49 43.44 45.78 44.18 44.17 43.23 44.97 44.22 44.80 45.56

Avg@128 13.08 15.16 17.14 17.73 17.38 19.08 19.44 19.78 20.58 21.19
Average Cons@128 21.03 22.22 25.42 24.60 25.58 26.00 25.75 25.60 26.81 28.04

Pass@64 47.77 48.83 51.13 49.28 49.13 48.50 50.04 49.22 49.92 50.26
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Table 22: RL performance of the 10B-A0.5B MoE Model with β = 0; λ̃ = 0; λ̂ = −0.1.

# RL Steps 100 200 300 400 500 600 700 800 900 1000

AIME24
Avg@128 0.37 0.34 0.50 0.70 0.78 0.70 0.76 0.81 0.78 1.22
Cons@128 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Pass@64 11.45 11.66 13.77 18.58 26.30 17.94 19.83 23.30 26.39 25.86

AIME25
Avg@128 0.39 0.18 0.31 0.31 0.60 0.52 0.55 0.60 0.55 0.76
Cons@128 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Pass@64 12.50 10.84 12.83 13.25 19.91 15.01 23.10 15.03 14.19 13.24

AMC23
Avg@128 11.91 14.30 15.12 17.87 19.71 20.27 21.72 22.68 22.87 24.32
Cons@128 25.00 35.00 27.50 35.00 32.50 37.50 35.00 37.50 35.00 40.00
Pass@64 72.28 75.78 74.15 75.68 77.69 74.47 75.45 70.93 80.24 73.19

OlympiadBench
Avg@128 8.08 9.71 10.69 12.87 14.36 14.86 15.96 16.31 16.76 17.47
Cons@128 16.00 20.00 20.89 23.70 23.26 23.26 24.74 25.33 24.59 25.93
Pass@64 49.35 50.50 52.65 54.15 53.54 53.70 54.05 55.85 54.78 54.95

MATH-500
Avg@128 27.41 32.00 34.17 38.08 40.73 41.59 43.06 42.97 44.00 45.20
Cons@128 47.20 51.20 53.60 55.00 57.40 58.00 57.80 58.40 59.40 59.00
Pass@64 84.11 84.77 84.79 86.88 86.96 87.37 86.11 87.32 87.34 87.70

Minerva
Avg@128 5.54 6.92 7.44 8.61 9.29 9.17 9.88 9.82 9.92 10.03
Cons@128 11.76 15.44 15.81 16.91 15.44 15.81 16.54 16.91 15.81 18.01
Pass@64 40.01 40.64 41.59 43.33 42.83 44.31 44.58 44.51 44.57 44.25

Avg@128 8.95 10.58 11.37 13.07 14.25 14.52 15.32 15.53 15.81 16.50
Average Cons@128 16.66 20.27 19.63 21.77 21.43 22.43 22.35 23.02 22.47 23.82

Pass@64 44.95 45.70 46.63 48.65 51.21 48.80 50.52 49.49 51.25 49.87

Table 23: RL performance of the 10B-A0.5B MoE Model with β = 0; λ̃ = 0.1; λ̂ = 0.

# RL Steps 100 200 300 400 500 600 700 800 900 1000

AIME24
Avg@128 0.32 0.50 0.65 0.86 0.83 0.96 0.81 0.68 0.83 0.99
Cons@128 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Pass@64 9.57 10.84 9.17 21.66 10.84 13.96 16.48 10.85 13.67 20.77

AIME25
Avg@128 0.21 0.26 0.34 0.44 0.42 0.76 0.83 0.99 1.17 1.02
Cons@128 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.33 3.33
Pass@64 8.97 10.65 14.62 16.81 11.14 18.23 18.34 16.27 17.94 17.51

AMC23
Avg@128 12.30 14.57 17.58 19.16 19.90 20.88 20.55 21.35 20.63 19.86
Cons@128 27.50 30.00 30.00 32.50 30.00 37.5 35.00 40.00 35.00 32.50
Pass@64 71.35 67.79 73.48 73.13 74.08 75.33 77.74 71.64 78.56 76.32

OlympiadBench
Avg@128 8.81 11.18 13.36 14.83 15.89 16.77 17.09 16.27 16.30 16.13
Cons@128 15.70 19.11 21.78 23.85 24.59 25.04 24.89 24.44 24.00 24.30
Pass@64 49.50 49.62 50.93 50.98 52.84 52.59 53.86 51.74 51.80 52.61

MATH-500
Avg@128 28.13 33.38 37.19 39.12 41.51 42.88 43.12 43.56 43.53 42.68
Cons@128 48.00 50.40 52.00 53.20 57.00 57.40 57.20 58.40 58.40 58.80
Pass@64 83.25 83.85 86.04 85.39 85.14 85.43 85.67 85.36 86.33 86.73

Minerva
Avg@128 5.50 6.58 7.76 8.31 9.08 8.88 8.95 7.83 7.89 7.78
Cons@128 8.46 12.13 11.40 12.50 15.44 15.07 13.97 11.03 9.93 11.40
Pass@64 40.19 40.53 42.63 43.57 44.28 43.39 44.42 42.66 42.90 42.55

Avg@128 9.21 11.08 12.81 13.79 14.61 15.19 15.23 15.11 15.06 14.74
Average Cons@128 16.61 18.61 19.20 20.34 21.17 22.50 21.84 22.31 21.78 21.72

Pass@64 43.81 43.88 46.15 48.59 46.39 48.16 49.42 46.42 48.53 49.42
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